[1]王佳锐,刘能锋,曲鹏.卷积神经网络金相组织自动识别[J].智能系统学报,2022,17(4):698-706.[doi:10.11992/tis.202110035]
 WANG Jiarui,LIU Nengfeng,QU Peng.Automatic identification of metallographic structure based on convolutional neural network[J].CAAI Transactions on Intelligent Systems,2022,17(4):698-706.[doi:10.11992/tis.202110035]
点击复制

卷积神经网络金相组织自动识别

参考文献/References:
[1] KHEDKAR P, MOTAGI R, MAHAJAN P, et al. A review on advance higu strength steels[J]. International journal of current engineering and technology, 2016, 6: 240.
[2] HONEYCOMBE R W K. Steels: microstructure and properties[M]. Fourth edition, Oxford: Butterworth-Heinemann, 2017.
[3] KRAUSS G. Steels: processing, structure, and performance[M]. 2nd edition. Materials Park: ASM International, 2015.
[4] OHSER J, MüCKLICH F. Statistical analysis of microstructures in materials science[J]. Practical metallography, 2001, 38(9): 538–539.
[5] 张勇, 李恒灿, 梁明亮. 基于PSO-BP神经网络的汽车用铸造AZ91镁合金晶粒尺寸的预测[J]. 热加工工艺, 2019, 48(3): 105–107,111
ZHANG Yong, LI Hengcan, LIANG Mingliang. Prediction of grain size of cast AZ91 magnesium alloy for automobile based on PSO-BP neural network[J]. Hot working technology, 2019, 48(3): 105–107,111
[6] 张鹏, 李靖, 王文先, 等. 基于卷积神经网络模型的Gd2O3/6061Al中子屏蔽材料的力学性能预测[J]. 原子能科学技术, 2020, 54(8): 1513–1518
ZHANG Peng, LI Jing, WANG Wenxian, et al. Prediction of mechanical property of Gd2O3/6061Al neutron shielding material based on convolutional neural network model[J]. Atomic energy science and technology, 2020, 54(8): 1513–1518
[7] 曹卓, 但雅波, 李想, 等. 基于卷积神经网络模型中梯度与特征分析的材料性能优化与预测机理研究[J]. 中国材料进展, 2020, 39(5): 385–390
CAO Zhuo, DAN Yabo, LI Xiang, et al. Research on optimization and prediction mechanism of material properties based on gradient and feature analysis in convolution neural network[J]. Materials China, 2020, 39(5): 385–390
[8] 李维刚, 谌竟成, 范丽霞, 等. 基于卷积神经网络的钢铁材料微观组织自动辨识[J]. 钢铁研究学报, 2020, 32(1): 33–43
LI Weigang, CHEN Jingcheng, FAN Lixia, et al. Automatic identification of microstructure of iron and steel material based on convolutional neural network[J]. Journal of iron and steel research, 2020, 32(1): 33–43
[9] 雷涛, 李云彤, 周文政, 等. 数据与模型联合驱动的陶瓷材料晶粒分割[J]. 自动化学报, 2022, 48(4): 1137–1152
LEI Tao, LI Yuntong, ZHOU Wenzheng, et al. Grain segmentation of ceramic materials using data-driven jointing model-driven[J]. Acta automatica sinica, 2022, 48(4): 1137–1152
[10] GOLA J, BRITZ D, STAUDT T, et al. Advanced microstructure classification by data mining methods[J]. Computational materials science, 2018, 148: 324–335.
[11] WEBEL J, GOLA J, BRITZ D, et al. A new analysis approach based on Haralick texture features for the characterization of microstructure on the example of low-alloy steels[J]. Materials characterization, 2018, 144: 584–596.
[12] TSUTSUI K, TERASAKI H, MAEMURA T, et al. Microstructural diagram for steel based on crystallography with machine learning[J]. Computational materials science, 2019, 159: 403–411.
[13] GOLA J, WEBEL J, BRITZ D, et al. Objective microstructure classification by support vector machine (SVM) using a combination of morphological parameters and textural features for low carbon steels[J]. Computational materials science, 2019, 160: 186–196.
[14] 邹耀斌, 雷帮军, 臧兆祥, 等. 归一化互信息量最大化导向的自动阈值选择方法[J]. 自动化学报, 2019, 45(7): 1373–1385
ZOU Yaobin, LEI Bangjun, ZANG Zhaoxiang, et al. Automatic threshold selection guided by maximizing normalized mutual information[J]. Acta automatica sinica, 2019, 45(7): 1373–1385
[15] WU Tingfan, MOVELLAN J. Semi-parametric Gaussian process for robot system identification[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura Algarve: IEEE, 2012: 725?731.
[16] VAN DER WILK M, RASMUSSEN C E, HENSMAN J. Convolutional Gaussian processes[C]//NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 2845?2854.
[17] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. London: MIT, 2006
[18] 张若非, 付强, 高斌. 深度学习模型及应用详解[M]. 北京: 电子工业出版社, 2019: 2?6.
[19] MITCHELL Tom M. 机器学习[M]. 曾华军, 张银奎译. 北京: 机械工业出版社, 2012: 60?63.
[20] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541–551.
[21] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
[22] BOUVRIE J. Notes on convolutional neural networks[J]. In practice, 2006: 47–60.
[23] DUDA Richard O, HART Peter E, STORK David G. 模式分类[M]. 李宏东, 姚天翔译. 北京: 机械工业出版社, 2004.
[24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904–1916.
[25] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[EB/OL]. New York: arXiv, 2013. (2013?01?16)[2021?10?29].https://arxiv.org/abs/1301.3557.
[26] LE CUN Y, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[C]//NIPS’89: Proceedings of the 2nd International Conference on Neural Information Processing Systems. New York: ACM, 1989: 396?404.
[27] KIM H, NAM H, JUNG W, et al. Performance analysis of CNN frameworks for GPUs[C]//2017 IEEE International Symposium on Performance Analysis of Systems and Software. New York: IEEE, 2017: 55?64.
[28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems 25. Nevada: Curran Associates, 2012: 1097?1105.
[29] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. New York: arXiv, 2014. (2014?09?04)[2021?10?29].https://arxiv.org/abs/1409.1556.
[30] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units[EB/OL]. New York: arXiv, 2015. (2015?11?23) [2021?10?29].https://arxiv.org/abs/1511.07289.
相似文献/References:
[1]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[3]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[4]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[5]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[6]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[7]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[8]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[9]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[10]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]

备注/Memo

收稿日期:2021-10-29。
基金项目:国家自然科学基金项目(52161004);2021年廊坊市科技局高新技术项目(2021011018).
作者简介:王佳锐,讲师,主要研究方向为机器视觉、人工智能、深度学习算法应用;刘能锋,副教授,主要研究方向为机器人控制、教学平台设计;曲鹏,讲师,主要研究方向为金属材料制备与表征、高熵合金力学性能与检测、锆钛合金力学性能与检测
通讯作者:曲鹏. E-mail:372292920@qq.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com