[1]马成宇,刘华平,葛泉波.场景感知的分布式多智能体目标搜索方法[J].智能系统学报,2022,17(6):1244-1253.[doi:10.11992/tis.202110012]
MA Chengyu,LIU Huaping,GE Quanbo.Scene-aware decentralized Monte Carlo Tree Search of target discovery[J].CAAI Transactions on Intelligent Systems,2022,17(6):1244-1253.[doi:10.11992/tis.202110012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第6期
页码:
1244-1253
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2022-11-05
- Title:
-
Scene-aware decentralized Monte Carlo Tree Search of target discovery
- 作者:
-
马成宇1, 刘华平2, 葛泉波3,4
-
1. 南通大学 电气工程学院,江苏 南通 226019;
2. 清华大学 计算机科学与技术系,北京 100084;
3. 同济大学 电子与信息工程学院,上海 201804;
4. 南京信息工程大学 自动化学院,江苏 南京 210044
- Author(s):
-
MA Chengyu1, LIU Huaping2, GE Quanbo3,4
-
1. School of Instrumentation and Electrical Engineering, Nantong University, Nantong 226019, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
3. School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China;
4. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
-
- 关键词:
-
场景图谱; 分布式; 目标搜索; 蒙特卡洛树搜索; 多目标优化; 动作规划; 多智能体系统; 视觉语义导航
- Keywords:
-
scene graph; decentralization; target search; Monte Carlo Tree Search; multi-objective optimization; action planning; multi-agent system; visual semantic navigation
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202110012
- 文献标志码:
-
2022-10-08
- 摘要:
-
在视觉语义导航任务中,智能体通过视觉信息,寻找并导航到给定对象类别的目标处。然而,大部分现有的研究都是使用基于学习的框架来完成任务,这些研究在现实世界中应用的训练成本非常高,可移植性很低,并且它们只适用于单智能体,效率低下、容错能力差。为解决上述问题,本文提出一种基于场景感知的分布式多目标优化蒙特卡洛树搜索模型,该模型中多智能体实时在线规划并且不需要预先训练,利用场景感知先验知识结合观测信息实时对环境进行估计,并且利用改进的蒙特卡洛树搜索进行路径规划以此搜索目标。在Mtterport3D数据集中进行的实验表明,该模型在效率方面比单智能体有着显著的提高。
- Abstract:
-
In visual semantic navigation, agents find and navigate to the target of a given object category through visual information. However, the majority of existing studies complete the task using a learning-based framework. These studies have a high training cost in the real world, low portability, and are only suitable for single-agent systems with low efficiency and poor fault tolerance. To address the above issues, this paper suggests a decentralized multi-objective optimization Monte Carlo Tree Search model based on scene awareness. In this model, multi-agent plans online in real time and does not need to train in advance. The improved Monte Carlo Tree Search is used for path planning to search targets, and the environment is estimated in real-time by using scene awareness prior knowledge combined with observation information. Experiments in the Matterport3D dataset demonstrate that the effectiveness of the model is significantly higher than that of a single agent.
备注/Memo
收稿日期:2021-10-13。
基金项目:国家自然科学基金项目(U1613212).
作者简介:马成宇,硕士研究生,主要研究方向为多智能体系统;刘华平,副教授,博士生导师,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,主要研究方向为机器人感知、学习与控制、多模态信息融合。主持国家自然科学基金重点项目2项。吴文俊人工智能科学技术奖获得者。发表学术论文300余篇;葛泉波,教授,博士生导师,主要研究方向为工程信息融合方法及应用、人机混合系统智能评估。主持国家自然科学基金青年基金项目1项。发表学术论文100余篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
1900-01-01