[1]陈斌,朱晋宁.双流增强融合网络微表情识别[J].智能系统学报,2023,18(2):360-371.[doi:10.11992/tis.202109036]
 CHEN Bin,ZHU Jinning.Micro-expression recognition based on a dual-stream enhanced fusion network[J].CAAI Transactions on Intelligent Systems,2023,18(2):360-371.[doi:10.11992/tis.202109036]
点击复制

双流增强融合网络微表情识别

参考文献/References:
[1] 朱伟杰, 陈莹. 双流网络信息交互机制下的微表情识别[J]. 计算机辅助设计与图形学学报, 2021, 33(4): 545–552
ZHU Weijie, CHEN Ying. Micro-expression recognition based on dual-stream networks information interaction[J]. Journal of computer-aided design & computer graphics, 2021, 33(4): 545–552
[2] HAGGARD E A, ISAACS K S. Micromomentary facial expressions as indicators of ego mechanisms in psychotherapy[M]//Methods of Research in Psychotherapy. Boston: Springer US, 1966: 154–165.
[3] EKMAN P, FRIESEN W V. Nonverbal leakage and clues to deception[J]. Psychiatry, 1969, 32(1): 88–106.
[4] KARIS M S, RAZIF N R A, ALI N M, et al. Local binary pattern (LBP) with application to variant object detection: a survey and method[C]//12th IEEE International Colloquium on Signal Processing & its Applications. Melaka:IEEE, 2016: 221?226.
[5] XU Feng, ZHANG Junping, WANG J Z. Microexpression identification and categorization using a facial dynamics map[J]. IEEE transactions on affective computing, 2017, 8(2): 254–267.
[6] WANG Sujing, CHEN Huiling, YAN Wenjing, et al. Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine[J]. Neural processing letters, 2014, 39(1): 25–43.
[7] PFISTER T, LI Xiaobai, ZHAO Guoying, et al. Recognising spontaneous facial micro-expressions[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 1449–1456.
[8] WANG Yandan, SEE J, PHAN R C W, et al. LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition[M]//Computer Vision-ACCV 2014. Cham: Springer International Publishing, 2015: 525–537.
[9] LIONG S T, SEE J, PHAN R C W, et al. Subtle expression recognition using optical strain weighted features[M]//Computer Vision-ACCV 2014 Workshops. Cham: Springer International Publishing, 2015: 644–657.
[10] LIU Yongjin, ZHANG Jinkai, YAN Wenjing, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE transactions on affective computing, 2016, 7(4): 299–310.
[11] HAPPY S L, ROUTRAY A. Fuzzy histogram of optical flow orientations for micro-expression recognition[J]. IEEE transactions on affective computing, 2019, 10(3): 394–406.
[12] GAN Y S, LIONG S T, YAU W C, et al. OFF-ApexNet on micro-expression recognition system[J]. Signal processing:image communication, 2019, 74: 129–139.
[13] 刘汝涵, 徐丹. 视频放大和深度学习在微表情识别任务上的应用[J]. 计算机辅助设计与图形学学报, 2019, 31(9): 1535–1541
LIU Ruhan, XU Dan. Video amplification and deep learning in micro-expression recognition[J]. Journal of computer-aided design & computer graphics, 2019, 31(9): 1535–1541
[14] 徐峰, 张军平. 人脸微表情识别综述[J]. 自动化学报, 2017, 43(3): 333–348
XU Feng, ZHANG Junping. Facial microexpression recognition: a survey[J]. Acta automatica sinica, 2017, 43(3): 333–348
[15] 苏育挺, 王蒙蒙, 刘婧, 等. 基于多运动特征融合的微表情识别算法[J]. 激光与光电子学进展, 2020, 57(14): 353–358
SU Yuting, WANG Mengmeng, LIU Jing, et al. Micro-expression recognition algorithm based on multiple motive feature fusion[J]. Laser & optoelectronics progress, 2020, 57(14): 353–358
[16] 诗雨桐, 袁德成. 基于深度学习的面部微表情识别[J]. 沈阳化工大学学报, 2021, 35(4): 380–384
SHI yutong,YUANG decheng. Facial microexpression rcongnition based on deep learning[J]. Journal of Shenyang university of chemical technology, 2021, 35(4): 380–384
[17] 朱伟杰, 陈莹. 双流时间域信息交互的微表情识别卷积网络[J]. 计算机科学与探索, 2022, 16(4): 950–958
ZHU Weijie, CHEN Ying. Micro-expression recognition convolutional network for dual-stream temporal-domain information interaction[J]. Journal of frontiers of computer science and technology, 2022, 16(4): 950–958
[18] YAN Wenjing, LI Xiaobai, WANG Sujing, et al. CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PLoS one, 2014, 9(1): e86041.
[19] LI Xiaobai, PFISTER T, HUANG Xiaohua, et al. A spontaneous micro-expression database: inducement, collection and baseline[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai: IEEE, 2013: 1–6.
[20] QU Fangbing, WANG Sujing, YAN Wenjing, et al. CAS(ME)2: A database of spontaneous macro-expressions and micro-expressions[C]//International Conference on Human-Computer Interaction. Cham: Springer, 2016: 48–59.
[21] 潘通, 李文国. 基于特征拼接的行人重识别[J]. 激光与光电子学进展, 2019, 56(16): 193–199
PAN Tong, LI Wenguo. Person re-identification based on feature stitching[J]. Laser & optoelectronics progress, 2019, 56(16): 193–199
[22] PAN Hang, XIE Lun, LI Juan, et al. Micro-expression recognition by two-stream difference network[J]. IET computer vision, 2021, 15(6): 440–448.
[23] 徐玮, 郑豪, 杨种学. 基于双注意力模型和迁移学习的Apex帧微表情识别[J]. 智能系统学报, 2021, 16(6): 1015?1020.
XU Wei, ZHENG Hao, YANG Zhongxue. Apex frame micro-expression recognition based on dual attention model and transfer learning[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1015?1020.
[24] LI Jing, WANG Yandan, SEE J, et al. Micro-expression recognition based on 3D flow convolutional neural network[J]. Pattern analysis and applications, 2019, 22(4): 1331–1339.
[25] 张爱梅, 徐杨. 注意力分层双线性池化残差网络的表情识别[J]. 计算机工程与应用, 2020, 56(23): 161–166
ZHANG Aimei, XU Yang. Attention hierarchical bilinear pooling residual network for expression recognition[J]. Computer engineering and applications, 2020, 56(23): 161–166
[26] TEJA REDDY S P, TEJA KARRI S, DUBEY S R, et al. Spontaneous facial micro-expression recognition using 3D spatiotemporal convolutional neural networks[C]//2019 International Joint Conference on Neural Networks (IJCNN). Budapest: IEEE, 2019: 1–8.
[27] ZHOU Ling, MAO Qirong, XUE Luoyang. Dual-inception network for cross-database micro-expression recognition[C]//14th IEEE International Conference on Automatic Face & Gesture Recognition. Lille: IEEE, 2019: 1–5.
[28] 张艺涵, 张朝晖, 霍丽娜, 等. 结合双流特征融合及对抗学习的图像显著性检测[J]. 计算机辅助设计与图形学学报, 2021, 33(3): 376–384
ZHANG Yihan, ZHANG Zhaohui, HUO Lina, et al. Image saliency detection via two-stream feature fusion and adversarial learning[J]. Journal of computer-aided design & computer graphics, 2021, 33(3): 376–384
[29] 张红颖, 安征. 基于改进双流时空网络的人体行为识别[J]. 光学精密工程, 2021, 29(2): 420–429
ZHANG Hongying, AN Zheng. Human action recognition based on improved two-stream spatiotemporal network[J]. Optics and precision engineering, 2021, 29(2): 420–429
[30] YANG Dun, ZHOU Qing, WEN Ju. Interactive two-stream graph neural network for skeleton-based action recognition[J]. Journal of electronic imaging, 2021, 30: 033025.
[31] ZHU Dehui, DU Bo, ZHANG Liangpei. Two-stream convolutional networks for hyperspectral target detection[J]. IEEE transactions on geoscience and remote sensing, 2021, 59(8): 6907–6921.
[32] KIM N, CHO S, AHN C H, et al. Facial micro-expression recognition in video using squeezed landmark feature maps[C]//2021 International Conference on Information and Communication Technology Convergence. Jeju Island: ICT convergence, 2021: 1107-1110.
[33] ZACH C, POCK T, BISCHOF H. A duality based approach for realtime TV-L 1 optical flow[M]//Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg, 2007: 214–223.
[34] 李勇, 林小竹, 蒋梦莹. 基于跨连接LeNet-5网络的面部表情识别[J]. 自动化学报, 2018, 44(1): 176–182
LI Yong, LIN Xiaozhu, JIANG Mengying. Facial expression recognition with cross-connect LeNet-5 network[J]. Acta automatica sinica, 2018, 44(1): 176–182
[35] GOYAL S J, UPADHYAY A K, JADON R S, et al. Retraction note to: real-life facial expression recognition systems: a review[M]//Smart Computing and Informatics. Singapore: Springer Singapore, 2019: C1–C1.
[36] 陈斌, 朱晋宁, 东一舟. 基于残差整流增强卷积神经网络的表情识别[J]. 液晶与显示, 2020, 35(12): 1299–1308
CHEN Bin, ZHU Jinning, DONG Yizhou. Expression recognition based on residual rectifier enhanced convolution neural network[J]. Chinese journal of liquid crystals and displays, 2020, 35(12): 1299–1308
[37] 王秀友, 范建中, 刘华明, 等. 基于概率协作表示的多表情序列融合识别[J]. 激光与光电子学进展, 2019, 56(13): 87–93
WANG Xiuyou, FAN Jianzhong, LIU Huaming, et al. Multi-expression sequence fusion recognition based on probabilistic cooperative representation[J]. Laser & optoelectronics progress, 2019, 56(13): 87–93
[38] 张红颖, 王汇三, 胡文博. 基于双模型的相关滤波跟踪[J]. 光学精密工程, 2019, 27(11): 2450–2458
ZHANG Hongying, WANG Huisan, HU Wenbo. Correlation filter tracking algorithm based on double model[J]. Optics and precision engineering, 2019, 27(11): 2450–2458
[39] HUU P N, NGOC T L, MINH Q T. Proposing gesture recognition algorithm using two-stream convolutional network and LSTM[C]//IEEE Eighth International Conference on Communications and Electronics. Phu Quoc Island: IEEE, 2020: 427–432.
[40] 宋立飞, 翁理国, 汪凌峰, 等. 多尺度输入3D卷积融合双流模型的行为识别方法[J]. 计算机辅助设计与图形学学报, 2018, 30(11): 2074–2083
SONG Lifei, WENG Liguo, WANG Lingfeng, et al. Multi-scale 3D convolution fusion two-stream networks for action recognition[J]. Journal of computer-aided design & computer graphics, 2018, 30(11): 2074–2083
[41] 卢官明, 杨成, 杨文娟, 等. 基于LBP-TOP特征的微表情识别[J]. 南京邮电大学学报(自然科学版), 2017, 37(6): 1–7
LU Guanming, YANG Cheng, YANG Wenjuan, et al. Micro-expression recognition based on LBP-TOP features[J]. Journal of Nanjing university of posts and telecommunications (natural science edition), 2017, 37(6): 1–7
[42] 姜万, 周晓彦, 徐华南, 等. 基于LBP与双时空神经网络的微表情识别[J]. 信息与控制, 2020, 49(6): 673–679
JIANG Wan, ZHOU Xiaoyan, XU Huanan, et al. Micro-expression recognition based on LBP and two-stream spatial-temporal neural network[J]. Information and control, 2020, 49(6): 673–679
[43] KHOR H Q, SEE J, PHAN R C W, et al. Enriched long-term recurrent convolutional network for facial micro-expression recognition[C]//13th IEEE International Conference on Automatic Face & Gesture Recognition. Xi’an: IEEE, 2018: 667–674.
[44] 刘德志, 梁正友, 孙宇. 结合空间注意力机制与光流特征的微表情识别方法[J]. 计算机辅助设计与图形学学报, 2021, 33(10): 1541–1552
LIU Dezhi, LIANG Zhengyou, SUN Yu. Micro-expression recognition method based on spatial attention mechanism and optical flow features[J]. Journal of computer-aided design & computer graphics, 2021, 33(10): 1541–1552
[45] OH Y H, LE NGO A C, SEE J, et al. Monogenic Riesz wavelet representation for micro-expression recognition[C]//IEEE International Conference on Digital Signal Processing. Singapore: IEEE, 2015: 1237–1241.
[46] HUANG Xiaohua, ZHAO Guoying, HONG Xiaopeng, et al. Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns[J]. Neurocomputing, 2016, 175: 564–578.
[47] 张学森, 贾静平. 基于三维卷积神经网络和峰值帧光流的微表情识别算法[J]. 模式识别与人工智能, 2021, 34(5): 423–433
ZHANG Xuesen, JIA Jingping. Micro-expression recognition algorithm based on 3D convolutional neural network and optical flow fields from neighboring frames of apex frame[J]. Pattern recognition and artificial intelligence, 2021, 34(5): 423–433
[48] LIONG S T, SEE J, WONG K, et al. Less is more: micro-expression recognition from video using apex frame[J]. Signal processing:image communication, 2018, 62: 82–92.
相似文献/References:
[1]颜文靖,蒋柯,傅小兰.心理学视角下的自动表情识别[J].智能系统学报,2022,17(5):1039.[doi:10.11992/tis.202112056]
 YAN Wenjing,JIANG Ke,FU Xiaolan.Automatic facial expression recognition from a psychological perspective[J].CAAI Transactions on Intelligent Systems,2022,17():1039.[doi:10.11992/tis.202112056]

备注/Memo

收稿日期:2021-09-19。
基金项目:江苏省现代教育技术研究2021年度智慧校园专项课题(2021-R-96609).
作者简介:陈斌,高级工程师,博士,主要研究方向为模式识别、机器学习、大数据分析。主持江苏省高等学校信息化重点项目2项和厅局级项目3项。发表学术论文20余篇;朱晋宁,高级工程师,主要研究方向为大数据分析、智能系统
通讯作者:陈斌. E-mail:60167@njnu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com