[1]任艳,张茜.基于公理模糊集与粒计算的人脸语义提取方法[J].智能系统学报,2022,17(5):1021-1031.[doi:10.11992/tis.202108023]
 REN Yan,ZHANG Qian.A facial semantic extraction method based on axiomatic fuzzy sets and granular computing[J].CAAI Transactions on Intelligent Systems,2022,17(5):1021-1031.[doi:10.11992/tis.202108023]
点击复制

基于公理模糊集与粒计算的人脸语义提取方法

参考文献/References:
[1] REN Y, LI Q, LIU W, et al. Semantic facial descriptor extraction via Axiomatic Fuzzy Set[J]. Neurocomputing, 2016, 171: 1462–1474.
[2] PALACIOS A, PALACIOS J, SANCHEZ L, et al. Genetic learning of the membership functions for mining fuzzy association rules from low quality data[J]. Information sciences, 2015, 295: 358–378.
[3] KARCZMAREK P, KIERSZTYN A, RUTKA P, et al. Linguistic descriptors in face recognition: a literature survey and the perspectives of future development[C]// 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). [S.l.]. IEEE, 2015: 98?103.
[4] LIU Xiaodong. A new mathematical axiomatic system of fuzzy sets and systems[J]. Journal of Dalian Maritime University, 1995, 3: 559–560.
[5] CAI Y, ZHANG H, SUN S, et al. Axiomatic fuzzy set theory-based fuzzy oblique decision tree with dynamic mining fuzzy rules[J]. Neural computing and applications, 2020, 32(15): 11621–11636.
[6] LI Zedong, DUAN Xiaodong, ZHANG Qingling, et al. Multi-ethnic facial features extraction based on axiomatic fuzzy set theory[J]. Neurocomputing, 2017, 242: 161–177.
[7] WANG Weina, LIU Xiaodong. Fuzzy forecasting based on automatic clustering and axiomatic fuzzy set classification[J]. Information sciences, 2015, 294: 78–94.
[8] LIU Mengmeng, LIU Xiaodong, JIA Wenjuan, et al. The trading strategy of inflection point futures analysis based on AFS theory[C]//2020 39th Chinese Control Conference (CCC). Shenyang, China. IEEE, 2020: 2170?2175.
[9] 储德润, 周治平. 公理化模糊共享近邻自适应谱聚类算法[J]. 智能系统学报, 2019, 14(5): 897–904
CHU Derun, ZHOU Zhiping. Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory[J]. CAAI transactions on intelligent systems, 2019, 14(5): 897–904
[10] LIU X, PEDRYCZ W. Axiomatic fuzzy set theory and its applications[M]. Berlin, Heidelberg: Springer, 2009.
[11] DUAN Xiaodong, WANG Yuangang, PEDRYCZ W, et al. AFSNN: a classification algorithm using axiomatic fuzzy sets and neural networks[J]. IEEE transactions on fuzzy systems, 2018, 26(5): 3151–3163.
[12] JIA W, LIU X, WANG Y, et al. Semisupervised learning via axiomatic fuzzy set theory and SVM[J]. IEEE transactions on cybernetics, 2020(99): 1–14.
[13] LIANG A, LIU W, LI L, et al. Accurate facial landmarks detection for frontal faces with extended tree-structured models[J]. IEEE, 2014: 538–543.
[14] LIU Xiaodong, REN Yan. Novel artificial intelligent techniques via AFS theory: feature selection, concept categorization and characteristic description[J]. Applied soft computing, 2010, 10(3): 793–805.
[15] PEDRYCZ W, SUCCI G, SILLITTI A, et al. Data description: a general framework of information granules[J]. Knowledge-based Systems, 2015, 80: 98–108.
[16] 刘翠君, 赵才荣, 苗夺谦, 等. 粒化的Mean Shift行人跟踪算法[J]. 智能系统学报, 2016, 11(4): 433–441
LIU Cuijun, ZHAO Cairong, MIAO Duoqian, et al. Granular mean shift pedestrian tracking algorithm[J]. CAAI transactions on intelligent systems, 2016, 11(4): 433–441
[17] GROSS R, MATTHEWS I, COHN J, et al. Multi-PIE[J]. Image and vision computing, 2010, 28(5): 807–813.
[18] MARTINEZ A, BENAVENTE R. The AR face database[R]. Computer Vision Center Technical Report, 1998, 24.
[19] LIN S, CHEN W, LIN C, et al. Building a Chinese facial expression database for automatically detecting academic emotions to support instruction in blended and digital learning environments[J]. Innovative technologies and learning, 2019, 11937: 155–162.
[20] PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-Means clustering algorithm[J]. IEEE transactions on fuzzy systems, 2005, 13(4): 517–530.
[21] NIE F, WANG X, HUANG H. Clustering and projected clustering with adaptive neighbors[M]. New York: ACM, 2014.
[22] REN Y, GUAN W, LIU W, et al. Facial semantic descriptors based on information granules[J]. Information sciences, 2019, 479: 335–354.
[23] REN Y, ZHANG S, LIU W, et al. An advisable facial semantic characterization based on Axiomatic Fuzzy Set theory and information granules[J]. Information sciences, 2020, 523: 133–151.
[24] TAVALLALI P, TAVALLALI P, SINGHAL M. K-means tree: an optimal clustering tree for unsupervised learning[J]. The journal of supercomputing, 2021, 77(5): 5239–5266.
[25] HUBERT L, ARABIE P. Comparing partitions[J]. Journal of classification, 1985, 2(1): 193–218.

备注/Memo

收稿日期:2021-08-17。
基金项目:促进与加拿大、澳大利亚、新西兰及拉美地区科研合作与高层次人才培养项目(20201417);辽宁省教育厅基础研究项目(一般项目)(JYT2020018);辽宁省科技厅自然科学基金面上项目(2021-MS-265)
作者简介:任艳,副教授,博士,主要研究方向为知识发现与表示、图像语义提取。承担国家自然科学基金、航空基金、辽宁省自然科学基金等课题研究。发表学术论文35篇;张茜,硕士研究生,主要研究方向为知识发现与表示、图像语义提取
通讯作者:任艳. E-mail: renyan1108@yahoo.com.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com