[1]严浙平,曲思瑜,邢文.水下图像增强方法研究综述[J].智能系统学报,2022,17(5):860-873.[doi:10.11992/tis.202108022]
 YAN Zheping,QU Siyu,XING Wen.An overview of underwater image enhancement methods[J].CAAI Transactions on Intelligent Systems,2022,17(5):860-873.[doi:10.11992/tis.202108022]
点击复制

水下图像增强方法研究综述

参考文献/References:
[1] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE journal of oceanic engineering, 2005, 30(3): 570–587.
[2] TREIBITZ T, SCHECHNER Y Y. Active polarization descattering[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(3): 385?399.
[3] LI Hailan, WANG Xia, BAI Tingzhu, et al. Speckle noise suppression of range gated underwater imaging system[C]// Proc SPIE 7443, applications of digital image processing XXXII, San Diego, 2009, 7443: 641?648.
[4] ROSER M, DUNBABIN M, GEIGER A. Simultaneous underwater visibility assessment, enhancement and improved stereo[C]// IEEE International Conference on Robotics and Automation, Hong Kong, China,2014: 3840?3847.
[5] LU Huimin, LI Yujie, ZHANG Yudong, et al. Underwater optical image processing: a comprehensive review[J]. Mobile networks and applications, 2017, 22(6): 1204–1211.
[6] 王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学, 2017, 10(4): 438–448
WANG Hao, ZHANG Ye, SHEN Honghai, et al. Review of image enhancement algorithms[J]. Chinese optics, 2017, 10(4): 438–448
[7] 丁畅, 董丽丽, 许文海. “直方图”均衡化图像增强技术研究综述[J]. 计算机工程与应用, 2017, 53(23): 12–17
DING Chang, DONG Lili, XU Wenhai. Review of “histogram” equalization technique for image enhancement[J]. Computer engineering and applications, 2017, 53(23): 12–17
[8] 董丽丽, 丁畅, 许文海. 基于直方图均衡化图像增强的两种改进方法[J]. 电子学报, 2018, 46(10): 2367–2375
DONG Lili, DING Chang, XU Wenhai. Two improved methods based on histogram equalization for image enhancement[J]. Acta electronica sinica, 2018, 46(10): 2367–2375
[9] HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution[J]. IEEE transactions on image processing, 2013, 22(3): 1032–1041.
[10] 刘志成, 王殿伟, 刘颖, 等. 基于二维伽马函数的光照不均匀图像自适应校正算法[J]. 北京理工大学学报, 2016, 36(2): 191–196, 214
LIU Zhicheng, WANG Dianwei, LIU Ying, et al. Adaptive adjustment algorithm for non-uniform illumination images based on 2D gamma function[J]. Transactions of Beijing institute of technology, 2016, 36(2): 191–196, 214
[11] 冯维, 吴贵铭, 赵大兴, 等. 多图像融合Retinex用于弱光图像增强[J]. 光学精密工程, 2020, 28(3): 736–744
FENG Wei, WU Guiming, ZHAO Daxing, et al. Multi images fusion Retinex for low light image enhancement[J]. Optics and precision engineering, 2020, 28(3): 736–744
[12] 何笑, 王刚, 贺欢. 融合引导滤波和小波变换的水下图像增强算法[J]. 计算技术与自动化, 2021, 40(1): 114–118
HE Xiao, WANG Gang, HE Huan. Underwater image enhancement algorithm combining guided filtering and wavelet transform[J]. Computing technology and automation, 2021, 40(1): 114–118
[13] 李庆忠, 刘清. 基于小波变换的低照度图像自适应增强算法[J]. 中国激光, 2015, 42(2): 280–286
LI Qingzhong, LIU Qing. Adaptive enhancement algorithm for low illumination images based on wavelet transform[J]. Chinese journal of lasers, 2015, 42(2): 280–286
[14] WANG Jianhua, WANG Huibin, GAO Guowei, et al. Single underwater image enhancement based on: norm decomposition[J]. IEEE access, 2019(7): 145199–145213.
[15] 郭继昌, 李重仪, 郭春乐, 等. 水下图像增强和复原方法研究进展[J]. 中国图象图形学报, 2017, 22(3): 273–287
GUO Jichang, LI Chongyi, GUO Chunle, et al. Research progress of underwater image enhancement and restoration methods[J]. Journal of image and graphics, 2017, 22(3): 273–287
[16] 宋瑞霞, 李达, 王小春. 基于HSI色彩空间的低照度图像增强算法[J]. 图学学报, 2017, 38(2): 217–223
SONG Ruixia, LI Da, WANG Xiaochun. Low illumination image enhancement algorithm based on HSI color space[J]. Journal of graphics, 2017, 38(2): 217–223
[17] 贾芃, 李博, 赵晓龙. 基于HSI的改进Retinex水下图像增强算法[J]. 实验室研究与探索, 2020, 39(12): 1–4, 14
JIA Peng, LI Bo, ZHAO Xiaolong. Improved retinex underwater image enhancement algorithm based on HSI model[J]. Research and exploration in laboratory, 2020, 39(12): 1–4, 14
[18] 田会娟, 蔡敏鹏, 关涛, 等. 基于YCbCr颜色空间的Retinex低照度图像增强方法研究[J]. 光子学报, 2020, 49(2): 0210002
TIAN Huijuan, CAI Minpeng, GUAN Tao, et al. Low-light image enhancement method using retinex method based on YCbCr color space[J]. Acta photonica sinica, 2020, 49(2): 0210002
[19] 郝志成, 吴川, 杨航, 等. 基于双边纹理滤波的图像细节增强方法[J]. 中国光学, 2016, 9(4): 423–431
HAO Zhicheng, WU Chuan, YANG Hang, et al. Image detail enhancement method based on multi-scale bilateral texture filter[J]. Chinese optics, 2016, 9(4): 423–431
[20] SCHECHNER Y Y, KARPEL N. Clear underwater vision[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR. Washington, DC, IEEE, 2004: I.
[21] SCHETTINI R, CORCHS S. Underwater image processing: state of the art of restoration and image enhancement methods[J]. EURASIP journal on advances in signal processing, 2010, 2010: 14.
[22] HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(12): 2341–2353.
[23] GALDRAN A, PARDO D, PICóN A, et al. Automatic Red-Channel underwater image restoration[J]. Journal of visual communication and image representation, 2015, 26: 132–145.
[24] DREWS P L J, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE computer graphics and applications, 2016, 36(2): 24–35.
[25] AKKAYNAK D, TREIBITZ T. Sea-thru: a method for removing water from underwater images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, IEEE, 2019: 1682?1691.
[26] BERMAN D, LEVY D, AVIDAN S, et al. Underwater single image color restoration using haze-lines and a new quantitative dataset[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(8): 2822–2837.
[27] MOGHIMI M K, MOHANNA F. Real-time underwater image resolution enhancement using super-resolution with deep convolutional neural networks[J]. Journal of real-time image processing, 2021, 18(5): 1653–1667.
[28] 马悦. 基于深度学习的低照度图像增强方法[J]. 信息技术, 2021, 45(1): 85–89
MA Yue. Low-light image enhancement method based on deep learning[J]. Information technology, 2021, 45(1): 85–89
[29] UPLAVIKAR P, WU ZHENYU, WANG ZHANGYANG. All-in-one underwater image enhancement using domain-adversarial learning[EB/OL]. (2019?01?01)[2020?01?01].https: //arxiv. org/abs/1905.13342.
[30] 刘超, 张晓晖. 超低照度下微光图像的深度卷积自编码网络复原[J]. 光学 精密工程, 2018, 26(4): 951–961
LIU Chao, ZHANG Xiaohui. Deep convolutional autoencoder networks approach to low-light level image restoration under extreme low-light illumination[J]. Optics and precision engineering, 2018, 26(4): 951–961
[31] WU Zhenyu, WANG Zhangyang, WANG Zhaowen, et al. Towards privacy-preserving visual recognition via adversarial training: a pilot study[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 627?645.
[32] HUANG Xun, LIU Mingyu, BELONGIE S, et al. Multimodal unsupervised image-to-image translation[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 179?196.
[33] LIU Mingyu, BREUEL T, KAUTZ J. Unsupervised image-to-image translation networks[C]//NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 700?708.
[34] WANG Yang, ZHANG Jing, CAO Yang, et al. A deep CNN method for underwater image enhancement[C]//2017 IEEE International Conference on Image Processing. Beijing. IEEE, 2017: 1382?1386.
[35] CAO Keming, PENG Y T, COSMAN P C. Underwater image restoration using deep networks to estimate background light and scene depth[C]//2018 IEEE Southwest Symposium on Image Analysis and Interpretation. Las Vegas, IEEE, 2018: 1?4.
[36] FAYAZ S, PARAH S A, QURESHI G J, et al. Underwater image restoration: a state-of-the-art review[J]. IET image processing, 2021, 15(2): 269–285.
[37] 徐岩, 孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895–1903
XU Yan, SUN Meishuang. Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin university (engineering and technology edition), 2018, 48(6): 1895–1903
[38] SUN Xin, LIU Lipeng, LI Qiong, et al. Deep pixel-to-pixel network for underwater image enhancement and restoration[J]. IET image processing, 2019, 13(3): 469–474.
[39] 江泽涛, 覃露露. 一种基于U-Net生成对抗网络的低照度图像增强方法[J]. 电子学报, 2020, 48(2): 258–264
JIANG Zetao, QIN Lulu. Low-light image enhancement method based on U-net generative adversarial network[J]. Acta electronica sinica, 2020, 48(2): 258–264
[40] DENG Junjie, LUO Gege, ZHAO Caidan. UCT-GAN: underwater image colour transfer generative adversarial network[J]. IET image processing, 2020, 14(14): 3613–3622.
[41] ZHANG Tingting, LI Yujie, TAKAHASHI S. Underwater image enhancement using improved generative adversarial network[J]. Concurrency and computation: practice and experience, 2021, 33(22).
[42] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision. Venice, IEEE, 2017: 2242?2251.
[43] LU Jingyu, LI Na, ZHANG Shaoyong, et al. Multi-scale adversarial network for underwater image restoration[J]. Optics & laser technology, 2019, 110: 105–113.
[44] CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, IEEE, 2018: 8789?8797.
[45] LI Jie, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE robotics and automation letters, 2018, 3(1): 387–394.
[46] YE Xinchen, LI Zheng, SUN Baoli, et al. Deep joint depth estimation and color correction from monocular underwater images based on unsupervised adaptation networks[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(11): 3995–4008.
[47] ZHAO Hang, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE transactions on computational imaging, 2017, 3(1): 47–57.
[48] 程宇, 邓德祥, 颜佳, 等. 基于卷积神经网络的弱光照图像增强算法[J]. 计算机应用, 2019, 39(4): 1162–1169
CHENG Yu, DENG Dexiang, YAN Jia, et al. Weakly illuminated image enhancement algorithm based on convolutional neural network[J]. Journal of computer applications, 2019, 39(4): 1162–1169
[49] GUO Yecai, LI Hanyu, ZHUANG Peixian. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE journal of oceanic engineering, 2020, 45(3): 862–870.
[50] LIU Peng, WANG Guoyu, QI Hao, et al. Underwater image enhancement with a deep residual framework[J]. IEEE access, 2019(7): 94614–94629.
[51] HAN Yanling, HUANG Lihua, HONG Zhonghua, et al. Deep supervised residual dense network for underwater image enhancement[J]. Sensors (Basel, Switzerland), 2021, 21(9)–3289.
[52] WANG Jing, LI Ping, DENG Jianhua, et al. CA-GAN: class-condition attention GAN for underwater image enhancement[J]. IEEE access, 2020(8): 130719–130728.
[53] 王越, 王德兴, 袁红春, 等. 基于金字塔注意力机制和GAN的水下图像增强[J]. 激光与光电子学进展, 2021, 48(16): 161006–161010
WANG Yue, WANG Dexing, YUAN Hongchun, et al. Underwater image enhancement based on pyramid attention mechanism and generative adversarial network[J]. Laser and Optoelect-ronics Progress, 2021, 48(16): 161006–161010
[54] LI Yang, CHEN Rong. UDA-Net: densely attention network for underwater image enhancement[J]. IET image processing, 2021, 15(3): 774–785.
[55] YANG Xi, LI Hui, CHEN Rong. Underwater image enhancement with image colorfulness measure[J]. Signal processing:image communication, 2021, 95: 116225.
[56] WANG Kun, SHEN Liquan, LIN Yufei, et al. Joint iterative color correction and dehazing for underwater image enhancement[J]. IEEE robotics and automation letters, 2021, 6(3): 5121–5128.
[57] 黄鐄, 陶海军, 王海峰. 条件生成对抗网络的低照度图像增强方法[J]. 中国图象图形学报, 2019, 24(12): 2149–2158
HUANG Huang, TAO Haijun, WANG Haifeng. Low-illumination image enhancement using a conditional generative adversarial network[J]. Journal of image and graphics, 2019, 24(12): 2149–2158
[58] LIU Xiaodong, GAO Zhi, CHEN B M. MLFcGAN: multilevel feature fusion-based conditional GAN for underwater image color correction[J]. IEEE geoscience and remote sensing letters, 2020, 17(9): 1488–1492.
[59] YANG Miao, HU Ke, DU Yixiang, et al. Underwater image enhancement based on conditional generative adversarial network[J]. Signal processing:image communication, 2020, 81: 115723.
[60] ZONG Xianhui, CHEN Zhehan, WANG Dadong. Local-CycleGAN: a general end-to-end network for visual enhancement in complex deep-water environment[J]. Applied intelligence, 2021, 51(4): 1947–1958.
[61] 晋玮佩, 郭继昌, 祁清. 基于条件生成对抗网络的水下图像增强[J]. 激光与光电子学进展, 2020, 57(14): 141002.
JIN Weipei, GUO Jichang, QI Qing. Underwater image enhancement based on conditional generative adversarial network[J]. Laser & optoelectronics progress, 2020, 57(14): 141002.
[62] SIMONYAN K, ZISSERMAN A J C S. Very deep convolutional networks for large-scale image recognition[C]// IEEE International Conference on Learning Representations, San Diego, 2015.
[63] ZHANG Huiqing, SUN Luyu, WU Lifang, et al. DuGAN: an effective framework for underwater image enhancement[J]. IET image processing, 2021, 15(9): 2010–2019.
[64] PANETTA K, GAO Chen, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE journal of oceanic engineering, 2016, 41(3): 541–551.
[65] YANG Miao, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE transactions on image processing, 2015, 24(12): 6062–6071.
[66] LI Zongying, GU Zhaorui, ZHENG Haiyong, et al. Underwater image sharpness assessment based on selective attenuation of color in the water[C]//OCEANS 2016 - Shanghai. Shanghai, IEEE, 2016: 1?4.
[67] WANG Yan, LI Na, LI Zongying, et al. An imaging-inspired no-reference underwater color image quality assessment metric[J]. Computers & electrical engineering, 2018, 70: 904–913.
[68] LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE transactions on image processing, 2020, 29: 4376–4389.
相似文献/References:
[1]李庆武,蔡艳梅,徐立中.基于分块分类的智能视频监控背景更新算法[J].智能系统学报,2010,5(3):272.
 LI Qing-wu,CAI Yan-mei,XU Li-zhong.Background update algorithm based on blocks classification forintelligent video surveillance[J].CAAI Transactions on Intelligent Systems,2010,5():272.
[2]邵真天,袁杰.一种基于曲波变换的图像去块算法[J].智能系统学报,2012,7(2):102.
 SHAO Zhentian,YUAN Jie.An image deblocking algorithm based on curvelet transformation[J].CAAI Transactions on Intelligent Systems,2012,7():102.
[3]王锦榕,袁学海,刘增良.基于图像处理技术的瞳孔和角膜反射中心提取算法[J].智能系统学报,2012,7(5):423.
 WANG Jinrong,YUAN Xuehai,LIU Zengliang.An extraction method of pupil and corneal reflection centers based on image processing technology[J].CAAI Transactions on Intelligent Systems,2012,7():423.
[4]傅博,姜勇,王洪光,等.输电线路巡检图像智能诊断系统[J].智能系统学报,2016,11(1):70.[doi:10.11992/tis.201503043]
 FU Bo,JIANG Yong,WANG Hongguang,et al.Intelligent diagnosis system for patrol check images of power transmission lines[J].CAAI Transactions on Intelligent Systems,2016,11():70.[doi:10.11992/tis.201503043]
[5]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报,2016,11(2):241.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,11():241.[doi:10.11992/tis.201509017]
[6]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11():608.[doi:10.11992/tis.201512014]
[7]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(3):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12():279.[doi:10.11992/tis.201606037]
[8]姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报,2017,12(5):729.[doi:10.11992/tis.201706018]
 JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,12():729.[doi:10.11992/tis.201706018]
[9]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[10]刘彪,黄蓉蓉,林和,等.基于卷积神经网络的盲文音乐识别研究[J].智能系统学报,2019,14(1):186.[doi:10.11992/tis.201805002]
 LIU Biao,HUANG Rongrong,LIN He,et al.Research on braille music recognition based on convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2019,14():186.[doi:10.11992/tis.201805002]

备注/Memo

收稿日期:2021-08-17。
基金项目:国家自然科学基金面上项目(52071102).
作者简介:严浙平,教授,博士生导师,主要研究方向为多传感器数据融合理论及其应用、水下无人航行器集成与控制和无人现场智能控制、系统综合仿真与验证。发表学术论文100余篇,出版专著2部;曲思瑜,硕士研究生,主要研究方向为图像处理、机器学习;邢文,讲师,主要研究方向为水下无人集群与自主智能协同控制、复杂网络与牵制趋同控制、网络攻击与弹性事件触发分布式控制、水下无人集群协同导航定位与非线性滤波。主持国防重点实验室开放基金1项、中央高校基础科研基金项目1项。发表学术论文20余篇
通讯作者:邢文. E-mail:xingwen@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com