[1]胡硕,王洁,孙妍,等.无人机视角下的多车辆跟踪算法研究[J].智能系统学报,2022,17(4):798-805.[doi:10.11992/tis.202108014]
HU Shuo,WANG Jie,SUN Yan,et al.Research on multi-vehicle tracking algorithm from the perspective of UAV[J].CAAI Transactions on Intelligent Systems,2022,17(4):798-805.[doi:10.11992/tis.202108014]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第4期
页码:
798-805
栏目:
学术论文—机器感知与模式识别
出版日期:
2022-07-05
- Title:
-
Research on multi-vehicle tracking algorithm from the perspective of UAV
- 作者:
-
胡硕, 王洁, 孙妍, 周思恩, 姚美玉
-
燕山大学 电气工程学院,河北 秦皇岛 066004
- Author(s):
-
HU Shuo, WANG Jie, SUN Yan, ZHOU Sien, YAO Meiyu
-
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
-
- 关键词:
-
车辆检测; 目标跟踪; 无人机视频; 特征提取; 轻量级网络; 深度特征; 损失函数; 深度度量学习
- Keywords:
-
vehicle detection; object tracking; UAV video; feature extraction; lightweight network; deep feature; loss function; deep metric learning
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202108014
- 摘要:
-
针对无人机视频中存在目标密集、运动噪声强而导致跟踪性能显著下降的问题,提出了一种改进YOLOv3的车辆检测算法及一种基于深度度量学习的多车辆跟踪算法。针对车辆检测的精度与实时性问题,采用深度可分离卷积网络MobileNetv3作为特征提取网络实现网络结构轻量化,同时采用CIoU Loss作为边框损失函数对网络进行训练。为了在多目标跟踪过程中提取到更具判别力的深度特征,提出了一种基于深度度量学习的多车辆跟踪算法,实验证明,本文提出的算法有效改善车辆ID跳变问题,速度上满足无人机交通视频下车辆跟踪的实时性要求,达到17 f/s。
- Abstract:
-
Aiming at the decline of tracking performance suffering from dense targets and strong motion noise in UAV video, we propose a vehicle detection algorithm based on improved YOLOv3 and a multi-vehicle tracking algorithm based on deep metric learning. To improve the vehicle detection system’s accuracy and real-time performance, a deep separable convolution network, MobileNetv3, is adopted as the feature extraction network to realize a lightweight network structure, and the CIoU Loss is used as the frame loss function to train the network. A multi-vehicle tracking algorithm based on depth metric learning is proposed to extract more discriminative deep features during multi-target tracking. Experiments reveal that the algorithm proposed in this paper effectively improves the problem of target ID jump and meets the real-time requirement of vehicle tracking in UAV traffic video, reaching 17 FPS.
更新日期/Last Update:
1900-01-01