[1]王子佳,詹志辉.基于概率评估差分进化的多峰值优化[J].智能系统学报,2022,17(2):427-439.[doi:10.11992/tis.202108007]
WANG Zijia,ZHAN Zhihui.Multimodal function optimization based on DE algorithm of probabilistic evaluation mechanism[J].CAAI Transactions on Intelligent Systems,2022,17(2):427-439.[doi:10.11992/tis.202108007]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第2期
页码:
427-439
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2022-03-05
- Title:
-
Multimodal function optimization based on DE algorithm of probabilistic evaluation mechanism
- 作者:
-
王子佳1, 詹志辉2
-
1. 广州大学 计算机科学与网络工程学院, 广东 广州 510006;
2. 华南理工大学 计算机科学与工程学院, 广东 广州 510006
- Author(s):
-
WANG Zijia1, ZHAN Zhihui2
-
1. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China;
2. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
-
- 关键词:
-
多峰值优化; 全局最优解; 演化算法; 双层适应值评估概率; 选择性评估; 差分进化算法; 历史更新经验; 高效适应值评估
- Keywords:
-
multimodal function optimization; global optima; evolutionary algorithm; two-level fitness evaluation probability; selective evaluation; differential evolution algorithm; historical update experience; high-efficiency fitness evaluation
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202108007
- 摘要:
-
多峰值优化问题要求算法同时找到一个问题的多个全局最优解。近年来,演化算法已被广泛用于求解多峰值优化问题。然而,如何在极其有限的适应值评估次数内找到问题的多个全局最优解依然为演化算法带来了巨大的挑战。通过分析个体的历史更新经验,为每个个体赋予双层适应值评估概率,对个体进行选择性评估,从而减少算法运行过程中无效或低效的适应值评估,提出了一种基于概率评估差分进化的多峰值优化算法。实验结果显示,概率评估机制可以为算法节省更多的适应值评估次数,增加迭代过程,效果远好于其他主流的多峰值优化算法。
- Abstract:
-
Multimodal optimization problems (MMOPs) require algorithms to simultaneously determine multiple global optima. Recently, evolutionary algorithms (EAs) have been widely used to solve MMOPs. However, there is still a great challenge for EAs to determine multiple global optima within very limited fitness evaluation (FE) times. To solve the inefficient FE, this paper proposes a multimodal function optimization algorithm based on the differential evolution algorithm of the probabilistic evaluation mechanism for solving MMOPs. In this algorithm, each individual will be assigned with the two-level FE probability according to its historical update experience to determine whether it needs to be evaluated. The experimental results show that the probabilistic evaluation mechanism can reduce FE times for the proposed algorithm and increase its iterative process, and its effect is much better than that of other mainstream mechanisms.
备注/Memo
收稿日期:2021-08-09。
基金项目:国家自然科学基金项目(61772207,61873097,62106055)
作者简介:王子佳,副教授,主要研究方向为演化算法及应用。
詹志辉,教授,博士生导师,主要研究方向为人工智能、进化计算、群体智能、云计算和大数据。先后荣获吴文俊人工智能优秀青年奖、IEEE计算智能学会全球杰出博士学位论文奖、中国计算机学会优秀博士论文奖。发表学术论文100余篇,其中IEEETransactions系列的计算机领域顶尖国际期刊论文40余篇
通讯作者:詹志辉.E-mail:zhanapollo@163.com
更新日期/Last Update:
1900-01-01