[1]王文辉,刘彦隆.基于残差通道注意力的视网膜血管图像分割[J].智能系统学报,2023,18(6):1268-1274.[doi:10.11992/tis.202107063]
WANG Wenhui,LIU Yanlong.Retinal vascular image segmentation based on residual channel attention[J].CAAI Transactions on Intelligent Systems,2023,18(6):1268-1274.[doi:10.11992/tis.202107063]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第6期
页码:
1268-1274
栏目:
学术论文—智能系统
出版日期:
2023-11-05
- Title:
-
Retinal vascular image segmentation based on residual channel attention
- 作者:
-
王文辉, 刘彦隆
-
太原理工大学 信息与计算机学院, 山西 晋中 030600
- Author(s):
-
WANG Wenhui, LIU Yanlong
-
School of Information and Computer Science, Taiyuan University of Technology, Jinzhong 030600, China
-
- 关键词:
-
图像处理; 视网膜血管; 通道注意力; 边缘检测; 灵敏度; 双残差结构; 特征融合; 深度学习
- Keywords:
-
image processing; retinal blood vessel; channel attenrion; edge detection; sensitivity; double residual block; feature fusion; deep learning
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202107063
- 摘要:
-
视网膜血管分割是诊断许多早期眼睛相关疾病的重要步骤。本文将整体嵌套边缘检测(holistically-nested edge detection,HED)网络应用于视网膜血管图像分割,并对该模型进行了一系列改进:针对现有方法识别边缘和精细血管能力不足的问题,引入了一种新的改进的高效通道注意(modified efficient chanel attention,MECA)模块,并且采用了双残差结构加深模型结构,提取更加精细的血管结构,为了防止模型加深产生过拟合问题,引入了结构化丢弃模块。为了进一步提高模型的灵敏度,本文在HED网络的特征融合阶段加入融合了MECA模块的短连接结构。实验表明,所提网络的灵敏度相比于目前最先进的方法有了明显提升,这说明本文所提方法具有最先进的识别视网膜血管的能力。
- Abstract:
-
Segmentation of retinal blood vessels is an important step in the diagnosis of many early eye-related diseases. In this paper, the holistically-nested edge detection (HED) network is applied to retinal vascular image segmentation, and a series of improvements are made to the model: a new modified efficient channel attention (MECA) module is introduced to address the lack of ability of existing methods to identify edges and fine vessels, and a double residual structure is used to deepen the model structure to extract finer vascular structures. A structured DropBlock module is introduced to prevent overfitting problems from model deepening. In order to further improve sensitivity of the model, a short connection structure incorporating the MECA module is added in the feature fusion phase of the HED network. Experiments show that compared with the current state-of-the-art methods, the sensitivity of the proposed network is significantly improved, which indicates that the proposed method has the state-of-the-art ability to identify retinal vessels.
备注/Memo
收稿日期:2021-7-29。
作者简介:王文辉,硕士研究生,主要研究方向为计算机视觉、图像处理;刘彦隆,副教授,主要研究方向为计算机视觉、图像处理。主持和参与山西教育厅教学改革项目1项,发表学术论文20篇
通讯作者:刘彦隆.E-mail:forever620@outlook.com
更新日期/Last Update:
1900-01-01