[1]常新功,王金珏.基于图卷积集成的网络表示学习[J].智能系统学报,2022,17(3):547-555.[doi:10.11992/tis.202107048]
CHANG Xingong,WANG Jinjue.Network representation learning using graph convolution ensemble[J].CAAI Transactions on Intelligent Systems,2022,17(3):547-555.[doi:10.11992/tis.202107048]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第3期
页码:
547-555
栏目:
学术论文—智能系统
出版日期:
2022-05-05
- Title:
-
Network representation learning using graph convolution ensemble
- 作者:
-
常新功, 王金珏
-
山西财经大学 信息学院,山西 太原 030006
- Author(s):
-
CHANG Xingong, WANG Jinjue
-
School of Information, Shanxi University of Finance and Economics, Taiyuan 030006, China
-
- 关键词:
-
网络表示学习; 集成学习; 图卷积网络; 社交网络; 深度学习; 特征学习; 节点嵌入; 信息网络嵌入
- Keywords:
-
Network represents learning; Ensemble learning; Graph convolution network; Social network; Deep learning; Feature learning; Node embedding; Information network embedding
- 分类号:
-
TP301.6
- DOI:
-
10.11992/tis.202107048
- 摘要:
-
针对现有网络表示学习方法泛化能力较弱等问题,提出了将stacking集成思想应用于网络表示学习的方法,旨在提升网络表示性能。首先,将3个经典的浅层网络表示学习方法DeepWalk、Node2Vec、Line作为并列的初级学习器,训练得到三部分的节点嵌入拼接后作为新数据集;然后,选择图卷积网络(graph convolutional network, GCN)作为次级学习器对新数据集和网络结构进行stacking集成得到最终的节点嵌入,GCN处理半监督分类问题有很好的效果,因为网络表示学习具有无监督性,所以利用网络的一阶邻近性设计损失函数;最后,设计评价指标分别评价初级学习器和集成后的节点嵌入。实验表明,选用GCN集成的效果良好,各评价指标平均提升了1.47~2.97倍。
- Abstract:
-
Aimed at the weak generalization ability of the existing network representation learning methods, this paper proposes a stacking ensemble method that is applied to network representation learning to improve the performance of network representation. Three classical shallow network representation learning methods, namely, DeepWalk, Node2Vec, and Line, are used initially as parallel primary learners. After training, the embedded representation and three spliced node parts are obtained. Following this, the graph convolutional network (GCN) is selected as the secondary learner to stack and integrate the network structure and the new data set. This is done to obtain the final node embedded representation. GCN efficiently deals with semisupervised classification problems. As network representation learning is unsupervised, the first-order proximity of the network has been used to design the loss function. Finally, evaluation indices are designed to test the primary learner and integrated node eigenvector representation. The experimental results show that after the introduction of the integration method, each index improves by approximately 1.47–2.97 times.
更新日期/Last Update:
1900-01-01