[1]朱金侠,孟祥福,邢长征,等.融合社交关系的轻量级图卷积协同过滤推荐方法[J].智能系统学报,2022,17(4):788-797.[doi:10.11992/tis.202107031]
ZHU Jinxia,MENG Xiangfu,XING Changzheng,et al.Light graph convolutional collaborative filtering recommendation approach incorporating social relationships[J].CAAI Transactions on Intelligent Systems,2022,17(4):788-797.[doi:10.11992/tis.202107031]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第4期
页码:
788-797
栏目:
学术论文—人工智能基础
出版日期:
2022-07-05
- Title:
-
Light graph convolutional collaborative filtering recommendation approach incorporating social relationships
- 作者:
-
朱金侠, 孟祥福, 邢长征, 孙德伟, 薛琪, 关钧渤
-
辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
- Author(s):
-
ZHU Jinxia, MENG Xiangfu, XING Changzheng, SUN Dewei, XUE Qi, GUAN Junbo
-
School of Electronics and Information Engineering, Liaoning Technical University, Huludao 125105, China
-
- 关键词:
-
协同过滤; 图卷积网络; 注意力机制; 社交关系; 推荐系统; 隐式负反馈; 图嵌入; 用户偏好
- Keywords:
-
collaborative filtering; graph convolution network; attention mechanism; social relationships; recommendation system; implicit negative feedback; graph embedding; user preference
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.202107031
- 摘要:
-
图卷积网络(graph convolution network, GCN)因其强大的建模能力得到了迅速发展,目前大部分研究工作直接继承了GCN的复杂设计(如特征变换,非线性激活等),缺乏简化工作。另外,数据稀疏性和隐式负反馈没有被充分利用,也是当前推荐算法的局限。为了应对以上问题,提出了一种融合社交关系的轻量级图卷积协同过滤推荐模型。模型摒弃了GCN中特征变换和非线性激活的设计;利用社交关系从隐式负反馈中产生一系列的中间反馈,提高了隐式负反馈的利用率;最后,通过双层注意力机制分别突出了邻居节点的贡献值和每一层图卷积层学习向量的重要性。在2个公开的数据集上进行实验,结果表明所提模型的推荐效果优于当前的图卷积协同过滤算法。
- Abstract:
-
Graph convolutional network (GCN) has rapidly developed due to their powerful modeling capability. However, much of the research up to now has directly inherited the complex design of GCN (e.g., feature transformation and nonlinear activation), which lacks thorough ablation analysis on GCN. Additionally, implicit feedback is not fully utilized, and data sparsity is not well resolved, which are also shortcomings of current recommendation algorithms. This paper proposes a light graph convolutional collaborative filtering recommendation approach that incorporates social relationships to address such problems (F-LightGCCF). In GCN, the model abandons the design of feature transformation and nonlinear activation. Then it can generate a series of intermediate feedback from users’ implicit negative feedback by taking advantage of social networking, improving the utilization of implicit negative feedback. Lastly, the importance of the contribution values of neighboring nodes and the learning vectors of each layer of the graph convolution layer are aggregated separately using the dual attention mechanism. By conducting experiments on two publicly available datasets, the results show that the proposed model outperforms current graph convolutional collaborative filtering algorithms in the recommendation.
备注/Memo
收稿日期:2021-07-17。
基金项目:国家重点研发计划项目(2018YFB1402901);国家自然科学基金项目(61772249);辽宁省教育厅一般项目(LJ2019QL017).
作者简介:朱金侠,硕士研究生,主要研究方向为推荐系统;孟祥福,教授,CCF会员,主要研究方向为Web数据库top-k查询,空间数据管理,推荐系统和大数据可视化等。主持国家自然科学基金2项,主持辽宁省各类基金项目3项。发表学术论文60余篇, 出版学术专著1部;邢长征,教授,CCF会员,主要研究方向为分布式数据库与数据管理、流聚类、推荐系统。主持国家重点研发计划项目子课题任务1项,省部级科研项目3项,获辽宁省优秀教学成果一等奖1项。矿山安全应用类课题10余项。发表学术论文40余篇,编写出版教材3部
通讯作者:孟祥福. E-mail:marxi@126.com
更新日期/Last Update:
1900-01-01