[1]朱金侠,孟祥福,邢长征,等.融合社交关系的轻量级图卷积协同过滤推荐方法[J].智能系统学报,2022,17(4):788-797.[doi:10.11992/tis.202107031]
 ZHU Jinxia,MENG Xiangfu,XING Changzheng,et al.Light graph convolutional collaborative filtering recommendation approach incorporating social relationships[J].CAAI Transactions on Intelligent Systems,2022,17(4):788-797.[doi:10.11992/tis.202107031]
点击复制

融合社交关系的轻量级图卷积协同过滤推荐方法

参考文献/References:
[1] TANG Weitao, YU Dunhui, WEI Shiwei. Commodity recommendation algorithm fusing with knowledge graph and user comment[J]. Computer engineering, 2020, 46(08): 93–100.
[2] ZHANG Su, LI Hui, SHI Jun, et al. Reaearch on recommendation algorithm combining user comments and rating information[J]. Journal of shaanxi normal university, 2020, 48(02): 84–91.
[3] 印鉴, 王智圣, 李琪, 等. 基于大规模隐式反馈的个性化推荐[J]. 软件学报, 2014, 25(9): 1953–1966
YIN Jian, WANG Zhisheng, LI Qi, et al. Personalized recommendation based on large-scale implicit feedback[J]. Journal of software, 2014, 25(9): 1953–1966
[4] PETAR V, GUIKKEM C, ARANTXA C, et al. Graph attention networks. [C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018: 1710?1722.
[5] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//KDD ’14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2014: 701?710.
[6] 周林娥, 游进国. 一种结合聚集图嵌入的社会化推荐算法[J]. 小型微型计算机系统, 2021, 42(1): 78-84.
ZHOU Line, YOU Jinguo. Social Recommendation with Embedding of Summarized Graphs [J]Journal of Chinese computer systems. 2021, 42(1): 78?84.
[7] 高海燕, 毛林, 窦凯奇, 等. 基于图嵌入模型的协同过滤推荐算法[J]. 数据采集与处理, 2020, 35(3): 483-493.
GAO Haiyan, MAO Lin, DOU Kaiqi, et al. Graph embedding model based collaborative filtering algorithm [J]Journal of data acquisition and processing. 2020, 35(03): 483?493.
[8] WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165?174.
[9] HE Xiangnan, DENG Kuan, WANG Xiang, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//SIGIR’20: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639?648.
[10] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. New York: arXiv, 2016. (2016?09?09)[2021?07?17].https://arxiv.org/abs/1609.02907v4.
[11] 刘荣辉, 张敬普. 基于深度学习的正则化矩阵分解推荐系统[J]. 西南师范大学学报(自然科学版), 2021, 46(7): 103–108
LIU Ronghui, ZHANG Jingpu. Recommender system of regularization matrix decomposition based on deep learning[J]. Journal of Southwest China Normal University (natural science edition), 2021, 46(7): 103–108
[12] 吴国栋, 查志康, 涂立静, 等. 图神经网络推荐研究进展[J]. 智能系统学报, 2020, 15(1): 14–24
WU Guodong, ZHA Zhikang, TU Lijing, et al. Research advances in graph neural network recommendation[J]. CAAI transactions on intelligent systems, 2020, 15(1): 14–24
[13] 刘方爱, 王倩倩, 郝建华. 基于深度神经网络的推荐系统研究综述[J]. 山东师范大学学报(自然科学版), 2021, 36(4): 325–336
LIU Fangai, WANG Qianqian, HAO Jianhua. A survey of recommendation system based on deep neural network[J]. Journal of Shandong Normal University (natural science edition), 2021, 36(4): 325–336
[14] RIANNE Van Den Berg, THOMAS N. KIPF M W. Graph convolutional matrix completion[EB/OL]. New York: arXiv, 2017. (2017?06?07)[2021?07?17].https://arxiv.org/abs/1706.02263.
[15] YANG J H, CHEN C M, WANG Chuanju, et al. HOP-rec: high-order proximity for implicit recommendation[C]//RecSys’18: Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 140?144.
[16] LIU Donghua, LI Jing, DU Bo, et al. DAML: dual attention mutual learning between ratings and reviews for item recommendation[C]//KDD’19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019:344?352.
[17] XI Wudong, HUANG Ling, WANG Changdong, et al. BPAM: recommendation based on BP neural network with attention mechanism[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2019: 3905?3911.
[18] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//UAI’09: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2009: 452?461.
[19] RAO N, YU H F, RAVIKUMAR P, et al. Collaborative filtering with graph information: consistency and scalable methods[C]//NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2015: 2107?2115.
[20] LIANG Dawen, KRISHNAN R G, HOFFMAN M D, et al. Variational autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web. New York: ACM Press, 2018: 689–698.
[21] KINGMA DIEDERIK, BA JIMMY. Adam: a method for stochastic optimization. [C]//Proceedings of the International Conference on Learning Representations. San Diego: [s. n. ], 2015: 1412?1427.
[22] FU Sichao, LIU Weifeng, ZHANG Kai, et al. Semi-supervised classification by graph p-Laplacian convolutional networks[J]. Information sciences, 2021, 560: 92–106.
[23] 苏静, 许天琪, 张贤坤, 等. 基于图卷积与外积的协同过滤推荐模型[J]. 计算机应用研究, 2021, 38(10): 3044–3048
SU Jing, XU Tianqi, ZHANG Xiankun, et al. Collaborative filtering recommendation model based on graph convolution and cross product[J]. Application research of computers, 2021, 38(10): 3044–3048
相似文献/References:
[1]李慧,马小平,胡云,等.融合上下文信息的社会网络推荐系统[J].智能系统学报,2015,10(2):293.[doi:10.3969/j.issn.1673-4785.201406017]
 LI Hui,MA Xiaoping,HU Yun,et al.Social network recommendaton system mixing contex information[J].CAAI Transactions on Intelligent Systems,2015,10():293.[doi:10.3969/j.issn.1673-4785.201406017]
[2]沈苗,来天平,王素美,等.北京大学课程推荐引擎的设计和实现[J].智能系统学报,2015,10(3):369.[doi:10.3969/j.issn.1673-4785.201409045]
 SHEN Miao,LAI Tianping,WANG Sumei,et al.Design and implementation of the course recommendation engine in Peking University[J].CAAI Transactions on Intelligent Systems,2015,10():369.[doi:10.3969/j.issn.1673-4785.201409045]
[3]马钰,张岩,王宏志,等.面对智能导诊的个性化推荐算法[J].智能系统学报,2018,13(3):352.[doi:10.11992/tis.201711036]
 MA Yu,ZHANG Yan,WANG Hongzhi,et al.A personalized recommendation algorithm for intelligent guidance[J].CAAI Transactions on Intelligent Systems,2018,13():352.[doi:10.11992/tis.201711036]
[4]陈君同,古天龙,常亮,等.融合协同过滤与用户偏好的旅游组推荐方法[J].智能系统学报,2018,13(6):999.[doi:10.11992/tis.201802011]
 CHEN Juntong,GU Tianlong,CHANG Liang,et al.A tourist group recommendation method combining collaborative filtering and user preferences[J].CAAI Transactions on Intelligent Systems,2018,13():999.[doi:10.11992/tis.201802011]
[5]顾军华,谢志坚,武君艳,等.基于图游走的并行协同过滤推荐算法[J].智能系统学报,2019,14(4):743.[doi:10.11992/tis.201806002]
 GU Junhua,XIE Zhijian,WU Junyan,et al.Parallel collaborative filtering recommendation algorithm based on graph walk[J].CAAI Transactions on Intelligent Systems,2019,14():743.[doi:10.11992/tis.201806002]
[6]涂飞.多特征融合的兴趣点推荐算法[J].智能系统学报,2019,14(4):779.[doi:10.11992/tis.201801048]
 TU Fei.A point of interest recommendation algorithm based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2019,14():779.[doi:10.11992/tis.201801048]
[7]张蕾,钱峰,赵姝,等.基于多粒度结构的网络表示学习[J].智能系统学报,2019,14(6):1233.[doi:10.11992/tis.201905045]
 ZHANG Lei,QIAN Feng,ZHAO Shu,et al.Network representation learning based on multi-granularity structure[J].CAAI Transactions on Intelligent Systems,2019,14():1233.[doi:10.11992/tis.201905045]
[8]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[9]梁丽君,李业刚,张娜娜,等.融合用户特征优化聚类的协同过滤算法[J].智能系统学报,2020,15(6):1091.[doi:10.11992/tis.201710024]
 LIANG Lijun,LI Yegang,ZHANG Nana,et al.Collaborative filtering algorithm combining user features and preferences in optimized clustering[J].CAAI Transactions on Intelligent Systems,2020,15():1091.[doi:10.11992/tis.201710024]
[10]王健宗,肖京,朱星华,等.联邦推荐系统的协同过滤冷启动解决方法[J].智能系统学报,2021,16(1):178.[doi:10.11992/tis.202009032]
 WANG Jianzong,XIAO Jing,ZHU Xinghua,et al.Cold starts in collaborative filtering for federated recommender systems[J].CAAI Transactions on Intelligent Systems,2021,16():178.[doi:10.11992/tis.202009032]
[11]马甜甜,杨长春,严鑫杰,等.融合知识图谱和轻量级图卷积网络推荐系统的研究[J].智能系统学报,2022,17(4):721.[doi:10.11992/tis.202107016]
 MA Tiantian,YANG Changchun,YAN Xinjie,et al.Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J].CAAI Transactions on Intelligent Systems,2022,17():721.[doi:10.11992/tis.202107016]

备注/Memo

收稿日期:2021-07-17。
基金项目:国家重点研发计划项目(2018YFB1402901);国家自然科学基金项目(61772249);辽宁省教育厅一般项目(LJ2019QL017).
作者简介:朱金侠,硕士研究生,主要研究方向为推荐系统;孟祥福,教授,CCF会员,主要研究方向为Web数据库top-k查询,空间数据管理,推荐系统和大数据可视化等。主持国家自然科学基金2项,主持辽宁省各类基金项目3项。发表学术论文60余篇, 出版学术专著1部;邢长征,教授,CCF会员,主要研究方向为分布式数据库与数据管理、流聚类、推荐系统。主持国家重点研发计划项目子课题任务1项,省部级科研项目3项,获辽宁省优秀教学成果一等奖1项。矿山安全应用类课题10余项。发表学术论文40余篇,编写出版教材3部
通讯作者:孟祥福. E-mail:marxi@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com