[1]杨梦茵,陈俊芬,翟俊海.非对称卷积编码器的聚类算法[J].智能系统学报,2022,17(5):900-907.[doi:10.11992/tis.202107021]
YANG Mengyin,CHEN Junfen,ZHAI Junhai.A clustering method based on the asymmetric convolutional autoencoder[J].CAAI Transactions on Intelligent Systems,2022,17(5):900-907.[doi:10.11992/tis.202107021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第5期
页码:
900-907
栏目:
学术论文—机器学习
出版日期:
2022-09-05
- Title:
-
A clustering method based on the asymmetric convolutional autoencoder
- 作者:
-
杨梦茵1,2, 陈俊芬1,2, 翟俊海1,2
-
1. 河北大学 数学与信息科学学院,河北 保定 071002;
2. 河北省机器学习与计算智能重点实验室,河北 保定 071002
- Author(s):
-
YANG Mengyin1,2, CHEN Junfen1,2, ZHAI Junhai1,2
-
1. College of Mathematics and Information Science, Hebei University, Baoding 071002, China;
2. Hebei Key Laboratory of Machine Learning and Computational Intelligence, Baoding 071002, China
-
- 关键词:
-
无监督; 聚类; 深度神经网络; 卷积神经网络; 自编码器; 特征学习; 特征表示; 算法复杂性
- Keywords:
-
unsupervised; clustering; deep neural network; convolutional neural network; autoencoder; feature learning; feature representation; algorithm complexity
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.202107021
- 文献标志码:
-
2022-06-20
- 摘要:
-
基于深度神经网络的非监督学习方法通过联合优化特征表示和聚类指派,大大提升了聚类任务的性能。但大量的参数降低了运行速度,另外,深度模型提取的特征的区分能力也影响聚类性能。为此,提出一种新的聚类算法(asymmetric fully-connected layers convolutional auto-encoder, AFCAE),其中卷积编码器结合非对称全连接进行无监督的特征提取,然后K-means算法对所得特征执行聚类。网络采用3×3和2×2的小卷积核,大大减少了参数个数,降低了算法复杂性。在MNIST上AFCAE获得0.960的聚类精度,比联合训练的DEC(deep embedding clustering)方法(0.840)提高了12个百分点。在6个图像数据集上实验结果表明AFCAE网络有优异的特征表示能力,能出色完成下游的聚类任务。
- Abstract:
-
Unsupervised learning methods based on deep neural networks have synergistically optimized the feature representation and clustering assignment, thus greatly improving the clustering performance. However, numerous parameters slow down the running speed, and the discriminative ability of the features extracted by deep models also influences their clustering performance. To address these two issues, a new clustering algorithm is proposed (asymmetric fully-connected layers convolutional autoencoder, AFCAE), where a convolutional autoencoder combined with several asymmetric fully-connected layers is used to extract the features, and the K-means algorithm is subsequently applied to perform clustering on the obtained features. AFCAE adopts 3×3 and 2×2 convolutional kernels, thereby considerably reducing the number of parameters and the computational complexity. The clustering accuracy of AFCAE on MNIST reaches 0.960, almost 12% higher than that of the jointly trained DEC method (0.840). Experimental results on six image data sets show that the AFCAE network has excellent feature representation ability and can finish the subsequent clustering tasks well.
备注/Memo
收稿日期:2021-07-09。
基金项目:河北省引进留学人员资助项目(C20200302); 河北省机器学习与计算智能重点实验室自主立项项目(ZZ201909-202109-1);河北省科技计划重点研发项目(19210310D);河北省自然科学基金项目(F2021201020);河北省社会科学基金项目(HB20TQ005).
作者简介:杨梦茵,硕士研究生,主要研究方向为图像聚类和机器学习;陈俊芬,副教授,博士,CCF会员,主要研究方向为数据挖掘、机器学习和图像处理。主持河北省留学回国基金1项。发表学术论文10余篇;翟俊海,教授,博士生导师,博士,河北大学学术委员会委员,中国人工智能学会知识工程与分布智能专业委员会委员、粒计算与知识发现专业委员会委员,主要研究方向为大数据处理、机器学习、深度学习。主持省重点自然科学基金项目1项和省自然科学 基金项目2项,近3年发表学术论文 10余篇。
通讯作者:陈俊芬. E-mail: chenjunfen2010@126.com
更新日期/Last Update:
1900-01-01