[1]杨梦茵,陈俊芬,翟俊海.非对称卷积编码器的聚类算法[J].智能系统学报,2022,17(5):900-907.[doi:10.11992/tis.202107021]
 YANG Mengyin,CHEN Junfen,ZHAI Junhai.A clustering method based on the asymmetric convolutional autoencoder[J].CAAI Transactions on Intelligent Systems,2022,17(5):900-907.[doi:10.11992/tis.202107021]
点击复制

非对称卷积编码器的聚类算法

参考文献/References:
[1] LLOYD S. Least squares quantization in PCM[J]. IEEE transactions on information theory, 1982, 28(2): 129–137.
[2] HAEUSSER P, PLAPP J, GOLKOV V, et al. Associative deep clustering: training a classification network with no labels[C]//German Conference on Pattern Recognition. Cham: Springer, 2019: 18?32.
[3] REYNOLDS D. Gaussian mixture models[M]//Encyclopedia of Biometrics. Boston, MA: Springer US, 2009: 659?663.
[4] LIU Peng, ZHOU Dong, WU Naijun. VDBSCAN: varied density based spatial clustering of applications with noise[C]//2007 International Conference on Service Systems and Service Management. Chengdu, China. IEEE, 2007: 1?4.
[5] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley interdisciplinary reviews:computational statistics, 2010, 2(4): 433–459.
[6] ALQAHTANI A, XIE X, DENG J, et al. A deep convolutional auto-encoder with embedded clustering[C]//2018 25th IEEE International Conference on Image Processing. Athens, Greece. IEEE, 2018: 4058?4062.
[7] YU Tianqi, WANG Xianbin, SHAMI A. UAV-enabled spatial data sampling in large-scale IoT systems using denoising autoencoder neural network[J]. IEEE Internet of things journal, 2019, 6(2): 1856–1865.
[8] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
[9] MASCI J, MEIER U, CIRE?AN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 52?59.
[10] LEE Honglak, EKANADHAM C, NG A Y. Sparse deep belief net model for visual area V2[C]//Proc of Conf on Advances in Neural Information Processing Systems. Washington D. C. , USA: MIT Press, 2007: 873?880.
[11] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning-ICML ’08. Helsinki, Finland. New York: ACM Press, 2008: 1096?1103.
[12] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proc of Advances in Neural Information Processing Systems. Washington, USA: MIT Press, 2006: 153?160.
[13] MA Xiaolei, DAI Zhuang, HE Zhengbing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818.
[14] XIE Junyuan, ROSS G, ALI F. Unsupervised deep embedding for clustering analysis[C]//Proc of ICML’16 Proc of the 33rd Int Conf on Int Conf on Machine Learning. New York City, NY: Semantic Scholar, 2016: 478?487.
[15] GUO Xifeng, GAO Long, LIU Xinwang, et al. Improved deep embedded clustering with local structure preservation[C]//IJCAI’17: Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 1753?1759.
[16] YANG Bo, FU Xiao, NICHOLAS D S, et al. Towards K-means-friendly spaces: simultaneous deep learning and clustering[C]//Proc of ICML’17 Proc of the 34th Int Conf on Machine Learning. Sydney, Australia: TonyJebara, 2016: 3861?3870.
[17] HUANG Peihao, HUANG Yan, WANG Wei, et al. Deep embedding network for clustering[C]//2014 22nd International Conference on Pattern Recognition. Stockholm, Sweden. IEEE, 2014: 1532?1537.
[18] LI Fengfu, QIAO Hong, ZHANG Bo. Discriminatively boosted image clustering with fully convolutional auto-encoders[J]. Pattern recognition, 2018, 83: 161–173.
[19] VAN L, MAATEN D, GEOFFREY H. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(2605): 2579–2605.
[20] 陈俊芬, 赵佳成, 韩洁, 等. 基于深度特征表示的Softmax聚类算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 533–540
CHEN Junfen, ZHAO Jiacheng, HAN Jie, et al. Softmax clustering algorithm based on deep features representation[J]. Journal of Nanjing university (natural science edition), 2020, 56(4): 533–540
[21] HE Kaiming, SUN Jian. Convolutional neural networks at constrained time cost[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. IEEE, 2015: 5353?5360.
[22] SONG Chunfeng, LIU Feng, HUANG Yongzhen, et al. Auto-encoder based Data clustering[C]//Iberoamerican Congress on Pattern Recognition. Berlin, Heidelberg: Springer, 2013: 117?124.
[23] LIU Hongfu, SHAO Ming, LI Sheng, et al. Infinite ensemble for image clustering[C]//KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1745?1754.
[24] YANG Jianwei, PARIKH D, BATRA D. Joint unsupervised learning of deep representations and image clusters[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 5147?5156.
相似文献/References:
[1]杨小兵,何灵敏,孔繁胜.切换回归模型的抗噪音聚类算法[J].智能系统学报,2009,4(6):497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
 YANG Xiao-bing,HE Ling-min,KONG Fan-sheng.A noise-resistant clustering algorithm for switching regression models[J].CAAI Transactions on Intelligent Systems,2009,4():497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
[2]季瑞瑞,刘?? 丁.支持向量数据描述的基因表达数据聚类方法[J].智能系统学报,2009,4(6):544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
 JI Rui-rui,LIU Ding.Improved gene expression data clustering using a support vector domain description algorithm[J].CAAI Transactions on Intelligent Systems,2009,4():544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
[3]张秀玲,逄宗鹏,李少清,等.ANFIS的板形控制动态影响矩阵方法[J].智能系统学报,2010,5(4):360.
 ZHANG Xiu-ling,PANG Zong-peng,LI Shao-qing,et al.A dynamic influence matrix method for flatness control based on adaptivenetworkbased fuzzy inference systems[J].CAAI Transactions on Intelligent Systems,2010,5():360.
[4]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报,2011,6(1):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6():57.
[5]陈岳峰,苗夺谦,李文,等.基于概念的词汇情感倾向识别方法[J].智能系统学报,2011,6(6):489.
 CHEN Yuefeng,MIAO Duoqian,LI Wen,et al.Semantic orientation computing based on concepts[J].CAAI Transactions on Intelligent Systems,2011,6():489.
[6]方然,苗夺谦,张志飞.一种基于情感的中文微博话题检测方法[J].智能系统学报,2013,8(3):208.
 FANG Ran,MIAO Duoqian,ZHANG Zhifei.An emotion-based method of topic detection from Chinese microblogs[J].CAAI Transactions on Intelligent Systems,2013,8():208.
[7]刘恋,常冬霞,邓勇.动态小生境人工鱼群算法的图像分割[J].智能系统学报,2015,10(5):669.[doi:10.11992/tis.201501001]
 LIU lian,CHANG Dongxia,DENG Yong.An image segmentation method based on dynamic niche artificial fish-swarm algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():669.[doi:10.11992/tis.201501001]
[8]刘贝贝,马儒宁,丁军娣.基于密度的统计合并聚类算法[J].智能系统学报,2015,10(5):712.[doi:10.11992/tis.201410028]
 LIU Beibei,MA Runing,DING Jundi.Density-based statistical merging clustering algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():712.[doi:10.11992/tis.201410028]
[9]朱书伟,周治平,张道文.融合并行混沌萤火虫算法的K-调和均值聚类[J].智能系统学报,2015,10(6):872.[doi:10.11992/tis.201505043]
 ZHU Shuwei,ZHOU Zhiping,ZHANG Daowen.K-harmonic means clustering merged with parallel chaotic firefly algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():872.[doi:10.11992/tis.201505043]
[10]谷飞洋,田博,张思萌,等.基于置换检验的聚类结果评估[J].智能系统学报,2016,11(3):301.[doi:10.11992/tis.201603038]
 GU Feiyang,TIAN Bo,ZHANG Simeng,et al.Statistical evaluation of the clustering results based on permutation test[J].CAAI Transactions on Intelligent Systems,2016,11():301.[doi:10.11992/tis.201603038]
[11]张智,毕晓君.基于风格转换的无监督聚类行人重识别[J].智能系统学报,2021,16(1):48.[doi:10.11992/tis.202012014]
 ZHANG Zhi,BI Xiaojun.Clustering approach based on style transfer for unsupervised person re-identification[J].CAAI Transactions on Intelligent Systems,2021,16():48.[doi:10.11992/tis.202012014]

备注/Memo

收稿日期:2021-07-09。
基金项目:河北省引进留学人员资助项目(C20200302); 河北省机器学习与计算智能重点实验室自主立项项目(ZZ201909-202109-1);河北省科技计划重点研发项目(19210310D);河北省自然科学基金项目(F2021201020);河北省社会科学基金项目(HB20TQ005).
作者简介:杨梦茵,硕士研究生,主要研究方向为图像聚类和机器学习;陈俊芬,副教授,博士,CCF会员,主要研究方向为数据挖掘、机器学习和图像处理。主持河北省留学回国基金1项。发表学术论文10余篇;翟俊海,教授,博士生导师,博士,河北大学学术委员会委员,中国人工智能学会知识工程与分布智能专业委员会委员、粒计算与知识发现专业委员会委员,主要研究方向为大数据处理、机器学习、深度学习。主持省重点自然科学基金项目1项和省自然科学 基金项目2项,近3年发表学术论文 10余篇。
通讯作者:陈俊芬. E-mail: chenjunfen2010@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com