[1]贾鹤鸣,张棕淇,姜子超,等.基于混合身份搜索黏菌优化的模糊C-均值聚类算法[J].智能系统学报,2022,17(5):999-1011.[doi:10.11992/tis.202107011]
 JIA Heming,ZHANG Zongqi,JIANG Zichao,et al.An optimization fuzzy C-means clustering algorithm based on the hybrid identity search and slime mold algorithms[J].CAAI Transactions on Intelligent Systems,2022,17(5):999-1011.[doi:10.11992/tis.202107011]
点击复制

基于混合身份搜索黏菌优化的模糊C-均值聚类算法

参考文献/References:
[1] 贾鹤鸣,李瑶,孙康健.基于遗传乌燕鸥算法的同步优 化特征选择.[J].自动化学报, 2022, 48(6):1601-1615. JIA Heming, LI Yao, SUN Kangjian. Simultaneous feature selection optimization based on hybrid sooty tern optimization algorithm and genetic algorithm[J]. Acta automatica sinica, 2022, 48(6):1601-1615.
[2] 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327–336
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern recognition and artificial intelligence, 2014, 27(4): 327–336
[3] 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445–454
JIA Heming, JIANG Zichao, LI Yao. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and decision, 2022, 37(2): 445–454
[4] 汤正华. 基于改进蝙蝠优化自确定的模糊C-均值聚类算法[J]. 计量学报, 2020, 41(4): 505–512
TANG Zhenghua. Self-defined fuzzy clustering C-means algorithm based on improved bat optimization[J]. Acta metrologica sinica, 2020, 41(4): 505–512
[5] 董发志, 丁洪伟, 杨志军, 等. 基于遗传算法和模糊C均值聚类的WSN分簇路由算法[J]. 计算机应用, 2019, 39(8): 2359–2365
DONG Fazhi, DING Hongwei, YANG Zhijun, et al. WSN clustering routing algorithm based on genetic algorithm and fuzzy C-means clustering[J]. Journal of computer applications, 2019, 39(8): 2359–2365
[6] DUNN J C. A graph theoretic analysis of pattern classification via tamura’s fuzzy relation[J]. IEEE transactions on systems, man, and cybernetics, 1974, SMC-4(3): 310–313.
[7] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm intelligence, 2007, 1(1): 33–57.
[8] NIKNAM T, OLAMAEI J, AMIRI B. A hybrid evolutionary algorithm based on ACO and SA for cluster analysis[J]. Journal of applied sciences, 2008, 8(15): 2695–2702.
[9] OZTURK C, HANCER E, KARABOGA D. Dynamic clustering with improved binary artificial bee colony algorithm[J]. Applied soft computing, 2015, 28: 69–80.
[10] 蒙祖强, 胡玉兰, 蒋亮, 等. 基于混合蛙跳与阴影集优化的粗糙模糊聚类算法[J]. 控制与决策, 2015, 30(10): 1766–1772
MENG Zuqiang, HU Yulan, JIANG Liang, et al. Shuffled frog leaping algorithm and shadowed sets-based rough fuzzy clustering algorithm[J]. Control and decision, 2015, 30(10): 1766–1772
[11] 张新明, 王霞, 康强. 改进的灰狼优化算法及其高维函数和FCM优化[J]. 控制与决策, 2019, 34(10): 2073–2084
ZHANG Xinming, WANG Xia, KANG Qiang. Improved grey wolf optimizer and its application to high-dimensional function and FCM optimization[J]. Control and decision, 2019, 34(10): 2073–2084
[12] LI Shimin, CHEN Huiling, WANG Mingjing, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future generation computer systems, 2020, 111: 300–323.
[13] ZHOU Yongquan, WU Haizhou, LUO Qifang, et al. Automatic data clustering using nature-inspired symbiotic organism search algorithm[J]. Knowledge-based systems, 2019, 163: 546–557.
[14] ABDEL-BASSET M, CHANG V, MOHAMED R. HSMA_WOA: a hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images[J]. Applied soft computing, 2020, 95: 106642.
[15] MOSTAFA M, REZK H, ALY M, et al. A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel[J]. Sustainable energy technologies and assessments, 2020, 42: 100849.
[16] ABDEL-BASSET M, MOHAMED R, CHAKRABORTTY R K, et al. An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection[J]. Computers & industrial engineering, 2021, 153: 107078.
[17] BOGAR E, BEYHAN S. Adolescent Identity Search Algorithm (AISA): a novel metaheuristic approach for solving optimization problems[J]. Applied soft computing, 2020, 95: 106503.
[18] ZHAO Weiguo, ZHANG Zhenxing, WANG Liying. Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering applications of artificial intelligence, 2020, 87: 103300.
[19] 徐艳. Kmeans算法与群体智能算法(PSO)融合的研究与应用[D]. 呼和浩特: 内蒙古农业大学, 2019.
XU Yan. Research and application of kmeans algorithm and swarm intelligence algorithm(PSO)fusion[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
[20] DUA D, GRAFF C. UCI Machine Learning Repository [EB/OL]. [2020?10?21]. http://archive.ics.uci.edu/ml.

备注/Memo

收稿日期:2021-07-06。
基金项目:福建省自然科学基金面上项目(2021J011128); 福建省本科高校教育教学改革研究项目(FBJG20210338); 三明市科技计划引导性项目(2021-S-8); 三明学院教育教学改革重点项目(J2010305); 三明学院高教研究课题(SHE2013); 福建省农业物联网应用重点实验室开放研究基金项目(ZD2101).
作者简介:贾鹤鸣,教授,主要研究方向为群体智能优化算法与工程应用。主持福建省自然科学基金等项目10余项。发表学术论文60余篇;张棕淇,硕士研究生,主要研究方向为群体智能优化、机器学习和聚类技术;姜子超,硕士研究生,主要研究方向为群体智能优化、机器学习、特征选择和聚类技术
通讯作者:贾鹤鸣. E-mail:jiaheminglucky99@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com