[1]任成杰,陈怀新,谢卫.基于GRU自编码器的船舶航线提取[J].智能系统学报,2022,17(6):1201-1208.[doi:10.11992/tis.202107006]
 REN Chengjie,CHEN Huaixin,XIE Wei.Ship route extraction based on GRU auto-encoder[J].CAAI Transactions on Intelligent Systems,2022,17(6):1201-1208.[doi:10.11992/tis.202107006]
点击复制

基于GRU自编码器的船舶航线提取

参考文献/References:
[1] 徐良坤, 任律珍, 周世波. 船舶AIS轨迹聚类方法研究进展综述[J]. 广州航海学院学报, 2019, 27(2): 7–12,47
XU Liangkun, REN Lvzhen, ZHOU Shibo. Research progress on clustering AIS trajectory of vessels[J]. Journal of Guangzhou Maritime University, 2019, 27(2): 7–12,47
[2] 马俊, 董良雄, 李军. 一种基于K-means改进蚁群算法的船舶航线设计方法[J]. 中国修船, 2020, 33(3): 38–41
MA Jun, DONG Liangxiong, LI Jun. Method for designing ship routes based on improved ant colony algorithm of K-means[J]. China shiprepair, 2020, 33(3): 38–41
[3] 陈晓, 戴冉, 赵延鹏, 等. 基于鱼群算法的船舶避浅航线设计[J]. 中国航海, 2019, 42(3): 95–99,120
CHEN Xiao, DAI Ran, ZHAO Yanpeng, et al. Ship route planning to avoid shallow waters with artificial fish swarm algorithm[J]. Navigation of China, 2019, 42(3): 95–99,120
[4] HE Yankang, ZHANG Di, ZHANG Jinfen, et al. Ship route planning using historical trajectories derived from AIS data[J]. TransNav: the international journal on marine navigation and safety of sea transportation, 2019, 13(1): 69–76.
[5] 陈立家, 黄立文, 崔梅. 基于改进蚁群算法的船舶多约束最优航线设计[J]. 上海海事大学学报, 2017, 38(4): 11–15
CHEN Lijia, HUANG Liwen, CUI Mei. Optimal ship route planning with multiple constraints based on improved ant colony algorithm[J]. Journal of Shanghai Maritime University, 2017, 38(4): 11–15
[6] GRINYAK V M, SHULENINA A V, IVANENKO Y S. Ship routes planning based on traffic clustering[J]. Journal of physics:conference series, 2021, 1864(1): 012080.
[7] 韩志豪, 汪益兵, 张宇, 等. 基于深度强化学习的船舶航线自动规划[J]. 中国航海, 2021, 44(1): 100–105
HAN Zhihao, WANG Yibing, ZHANG Yu, et al. Automatic ship route planning based on deep reinforcement learning[J]. Navigation of China, 2021, 44(1): 100–105
[8] 龚铭凡, 徐海祥, 冯辉, 等. 基于改进蚁群算法的智能船舶路径规划[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(6): 1072–1076
GONG Mingfan, XU Haixiang, FENG Hui, et al. Intelligent ship path planning based on improved ant colony algorithm[J]. Journal of Wuhan University of Technology (transportation science & engineering edition), 2020, 44(6): 1072–1076
[9] 姚肖肖, 胡勤友, 杨春. 基于蚁群算法与海量AIS数据的船舶航线规划[J]. 交通信息与安全, 2019, 37(3): 79–85
YAO Xiaoxiao, HU Qinyou, YANG Chun. Route planning of vessels with ant colony algorithm and massive AIS data[J]. Journal of transport information and safety, 2019, 37(3): 79–85
[10] 杨令省. 船舶航线规划中的精确控制算法研究[J]. 舰船科学技术, 2017, 39(8): 85–87
YANG Lingxing. Research on precise control algorithm in ship route planning[J]. Ship science and technology, 2017, 39(8): 85–87
[11] 王加胜, 刘永学, 杨昆, 等. 基于空间聚类分析的南海主要航线提取方法[J]. 交通运输工程学报, 2016, 16(6): 91–98
WANG Jiasheng, LIU Yongxue, YANG Kun, et al. Extraction method of main routes in South China Sea based on spatial cluster analysis[J]. Journal of traffic and transportation engineering, 2016, 16(6): 91–98
[12] HALPERN B S, WALBRIDGE S, SELKOE K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948–952.
[13] LIN Dong. Spatial analysis of ship routes for maritime security and safe navigation[D]. Halifax: Dalhousie University, 2008.
[14] WANG Jiasheng, LI Manchun, LIU Yongxue, et al. Safety assessment of shipping routes in the South China Sea based on the fuzzy analytic hierarchy process[J]. Safety science, 2014, 62: 46–57.
[15] YAO Di, ZHANG Chao, ZHU Zhihua, et al. Trajectory clustering via deep representation learning[C]//2017 International Joint Conference on Neural Networks (IJCNN). Anchorage: IEEE, 2017: 3880-3887.
[16] LEE J G, HAN Jiawei, WHANG K Y. Trajectory clustering: a partition-and-group framework[C]//SIGMOD’07: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2007: 593-604.
[17] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(12): 2218–2245.
[18] PALLOTTA G, VESPE M, BRYAN, K. Traffic route extraction and anomaly detection (TREAD): vessel pattern knowledge discovery and exploitation for maritime situational awareness[J]. Ref, 2012, 37(4): 37–44.
[19] PALLOTTA G, VESPE M, BRYAN K. Traffic knowledge discovery from AIS data[C]//Proceedings of the 16th International Conference on Information Fusion. Istanbul: IEEE, 2013: 1996-2003.
[20] DE VRIES G, SOMEREN M. Unsupervised ship trajectory modeling and prediction using compression and clustering[C]//Proceedings of the 18th Annual Belgian-Dutch Conference on Machine Learning. Tilburg: [s.n.], 2009: 7-12.
[21] WANG Lianhui, CHEN Pengfei, CHEN Linying, et al. Ship AIS trajectory clustering: an HDBSCAN-based approach[J]. Journal of marine science and engineering, 2021, 9(6): 566.
[22] COELHO DA SILVA T L, ZEITOUNI K, DE MACêDO J A F. Online clustering of trajectory data stream[C]//2016 17th IEEE International Conference on Mobile Data Management. Porto: IEEE, 2016: 112-121.
[23] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. (2014-09-03)[2021-07-06].https://arxiv.org/abs/1406.1078.
[24] CHO K, VAN MERRI?NBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[EB/OL]. (2014-10-07)[2021-07-06].https://arxiv.org/abs/1409.1259.
[25] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2021-07-06].https://arxiv.org/abs/1412.3555.

备注/Memo

收稿日期:2021-07-05。
基金项目:四川省重点研发项目(2020YFG0193).
作者简介:任成杰,硕士研究生,主要研究方向为深度学习、数据挖掘;陈怀新,教授,博士,主要研究方向为信息融合、视频图像处理、机器学习与智能系统等。主持四川省重点基金项目2项。发表学术论文40余篇;谢卫,高级工程师,主要研究方向为信息融合与数据挖掘
通讯作者:陈怀新.E-mail:huaixinchen@uestc.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com