[1]付鹏强,苗宇航,王义文,等.航空领域机器人自动钻孔研究进展及关键技术综述[J].智能系统学报,2022,17(5):874-885.[doi:10.11992/tis.202106049]
 FU Pengqiang,MIAO Yuhang,WANG Yiwen,et al.A review of research progress and key technologies of robotic drilling in aviation[J].CAAI Transactions on Intelligent Systems,2022,17(5):874-885.[doi:10.11992/tis.202106049]
点击复制

航空领域机器人自动钻孔研究进展及关键技术综述

参考文献/References:
[1] FROMMKNECHT A, KUEHNLE J, EFFENBERGER I, et al. Multi-sensor measurement system for robotic drilling[J]. Robotics and computer-integrated manufacturing, 2017, 47: 4–10.
[2] CIRILLO P, MARINO A, NATALE C, et al. A low-cost and flexible solution for one-shot cooperative robotic drilling of aeronautic stack materials[J]. IFAC-PapersOnLine, 2017, 50(1): 4602–4609.
[3] GARNIER S, SUBRIN K, WAIYAGAN K. Modelling of robotic drilling[J]. Procedia cirp, 2017, 58: 416–421.
[4] KLIMCHIK A, AMBIEHL A, GARNIER S, et al. Experimental study of robotic-based machining[J]. IFAC-PapersOnLine, 2016, 49(12): 174–179.
[5] DEVLIEG R. Expanding the use of robotics in airframe assembly via accurate robot technology[J]. SAE international journal of aerospace, 2010, 3(1): 198–203.
[6] DEVLIEG R, SITTON K, FEIKERT E, et al. Once (one-sided cell end effector) robotic drilling system[EB/OL].(2002?09?30)[2020?02?02].https://doi.org/10.4271/2002-01-2626.
[7] DEVLIEG R, FEIKERT E. One-up assembly with robots[EB/OL].(2008?09?16)[2020?12?12].https://doi.org/10.4271/2008-01-2297.
[8] DEVLIEG R. High-accuracy robotic drilling/milling of 737 inboard flaps[J]. SAE international journal of aerospace, 2011, 4(2): 1373–1379.
[9] BARTON E, WOLF R. Dramatic automatic fastening system with single robot positioner [EB/OL].(2017?09?19)[2021?10?12].?https://doi.org/10.4271/2017-01-2078.
[10] WHINNEM E, LIPCZYNSKI G, ERIKSSON I. Development of orbital drilling for the boeing 787[J]. SAE international journal of aerospace, 2008, 1(1): 811–816.
[11] LOGEMANN T. Mobile robot assembly cell (RACe) for drilling and fastening[EB/OL].(2016?09?19)[2021?11?02].https://doi.org/ 10.4271/ 2016-01-2078.
[12] MUELLER-HUMMEL P, Meiners C. New concept on drills up to 5/8″ (16mm) for one shot IT8 robot application[EB/OL].(2012?09?10)[2021?05?21]. https://doi.org/10.4271/2012-01-1865.
[13] WAURZYNIAK P. Aerospace automation stretches beyond drilling and filling[J]. Manufacturing engineering, 2015, 154(04): 73–86.
[14] EVERHART T. Neighboring mobile robot cell with drilling and fastening internation [EB/OL]. [2017–01–20]. http://doi:10.4271/2017–01–2094.
[15] M?LLER C, SCHMIDT H C, KOCH P, et al. Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry[J]. Procedia manufacturing, 2017, 14: 17–29.
[16] VON DRIGALSKI F, HAFI L E, ELJURI P M U, et al. Vibration-reducing end effector for automation of drilling tasks in aircraft manufacturing[J]. IEEE robotics and automation letters, 2017, 2(4): 2316–2321.
[17] NEUMANN K E. True mobile/portable drilling and machining, a paradigm shift in manufacturing[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, SAE International, 2017: 10.4271/2017-01-2084.
[18] ZHAN Qiang, LIU Zengbo, CAI Yao. A back-stepping based trajectory tracking controller for a non-chained nonholonomic spherical robot[J]. Chinese journal of aeronautics, 2008, 21(5): 472–480.
[19] NGUYEN H N, ZHOU Jian, KANG H J, et al. Robot geometric parameter identification with extended Kalman filtering algorithm[M]//Communications in Computer and Information Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 165?170.
[20] NGUYEN H N, ZHOU Jian, KANG H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing, 2015, 151: 996–1005.
[21] WANG Wei, TIAN Wei, LIAO Wenhe, et al. Identifying Chinese herbal medicine by image with three deep CNNs[C]//CCEAI 2021: Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. New York: ACM, 2021: 1?8.
[22] LI M, TIAN W, HU J, et al. Study on shear behavior of riveted lap joints of aircraft fuselage with different hole diameters and squeeze forces[J]. Engineering Failure Analysis, 2021, 127: 105499.
[23] LIU Hua, ZHU Weidong, KE Yinglin. Pose alignment of aircraft structures with distance sensors and CCD cameras[J]. Robotics and computer-integrated manufacturing, 2017, 48: 30–38.
[24] LIU Hua, ZHU Weidong, DONG Huiyue, et al. A helical milling and oval countersinking end-effector for aircraft assembly[J]. Mechatronics, 2017, 46: 101–114.
[25] LIU hua, ZHU weidong, DONG huiyue, et al. An adaptive ball-head positioning visual servoing method for aircraft digital assembly[J]. Assembly automation, 2019, 39(2): 287–296.
[26] MARTíNEZ R, CASTILLO O, AGUILAR L T. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms[J]. Information sciences, 2009, 179(13): 2158–2174.
[27] SAMADI M, OTHMAN M F. Global path planning for autonomous mobile robot using genetic algorithm[C]//2013 International Conference on Signal-Image Technology & Internet-Based Systems. Kyoto, Japan. IEEE, 2013: 726?730.
[28] TSAI C C, HUANG H C, CHAN Chengkai. Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation[J]. IEEE transactions on industrial electronics, 2011, 58(10): 4813–4821.
[29] THARWAT A, ELHOSENY M, HASSANIEN A E, et al. Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm[J]. Cluster computing, 2019, 22(2): 4745–4766.
[30] XIAO Hong, LI Yuan, ZHANG Kaifu, et al. Multi-objective optimization method for automatic drilling and riveting sequence planning[J]. Chinese journal of aeronautics, 2010, 23(6): 734–742.
[31] LIU Jianhua, YANG Jianguo, LIU Huaping, et al. An improved ant colony algorithm for robot path planning[J]. Soft computing, 2017, 21(19): 5829–5839.
[32] LIU Yanmei, CHEN Zhen, WANG Xin, et al. Research on adaptive ant colony algorithm in robot hole making path planning[J]. International journal of control and automation, 2017, 10(5): 189–198.
[33] TIAN Wei, ZHOU Weixue, ZHOU Wei, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese journal of aeronautics, 2013, 26(2): 495–500.
[34] ERKORKMAZ K, ALZAYDI A, ELFIZY A, et al. Time-optimal trajectory generation for 5-axis on-the-fly laser drilling[J]. CIRP annals, 2011, 60(1): 411–414.
[35] HUO Liguo, BARON L. The self-adaptation of weights for joint-limits and singularity avoidances of functionally redundant robotic-task[J]. Robotics and computer-integrated manufacturing, 2011, 27(2): 367–376.
[36] ZARGARBASHI S H H, KHAN W, ANGELES J. Posture optimization in robot-assisted machining operations[J]. Mechanism and machine theory, 2012, 51: 74–86.
[37] LéGER J, ANGELES J. Off-line programming of six-axis robots for optimum five-dimensional tasks[J]. Mechanism and machine theory, 2016, 100: 155–169.
[38] LA H M, LIM R S, BASILY B B, et al. Mechatronic systems design for an autonomous robotic system for high-efficiency bridge deck inspection and evaluation[J]. IEEE/ASME transactions on mechatronics, 2013, 18(6): 1655–1664.
[39] JIAO Jiachen, TIAN Wei, LIAO Wenhe, et al. Processing configuration off-line optimization for functionally redundant robotic drilling tasks[J]. Robotics and autonomous systems, 2018, 110: 112–123.
[40] LIANG Jie, BI Shusheng. Design and experimental study of an end effector for robotic drilling[J]. The international journal of advanced manufacturing technology, 2010, 50(1/2/3/4): 399–407.
[41] HEISEL U, PFEIFROTH T. Influence of point angle on drill hole quality and machining forces when drilling CFRP[J]. Procedia cirp, 2012, 1: 471–476.
[42] NORGIA M, MELCHIONNI D, MAGNANI A, et al. High-speed self-mixing laser distance sensor[J]. AIP conference proceedings, 2014, 1600(1): 422–425.
[43] LAZARO GALILEA J L, LAVEST J M, LUNA VAZQUEZ C A, et al. Calibration of a high-accuracy 3-D coordinate measurement sensor based on laser beam and CMOS camera[J]. IEEE transactions on instrumentation and measurement, 2009, 58(9): 3341–3346.
[44] RAO Gang, WANG Guolei, YANG Xiangdong, et al. Normal direction measurement and optimization with a dense three-dimensional point cloud in robotic drilling[J]. IEEE/ASME transactions on mechatronics, 2018, 23(3): 986–996.
[45] GAO Yuhao, WU Dan, DONG Yunfei, et al. The method of aiming towards the normal direction for robotic drilling[J]. International journal of precision engineering and manufacturing, 2017, 18(6): 787–794.
[46] GONG M, YUAN P, WANG T, et al. Intelligent verticality-adjustment method of end-effector in aeronautical drilling robot[J]. Bjing Hangkong Hangtian Daxue Xuebao/Journal of Bjing University of Aeronautics and Astronautics, 2012, 38(10): 1400–1404.
[47] YUAN Peijiang, WANG Qishen, SHI Zhenyun, et al. A micro-adjusting attitude mechanism for autonomous drilling robot end-effector[J]. Science China information sciences, 2014, 57(12): 1–12.
[48] OLSSON T, HAAGE M, KIHLMAN H, et al. Cost-efficient drilling using industrial robots with high-bandwidth force feedback[J]. Robotics and computer-integrated manufacturing, 2010, 26(1): 24–38.
[49] JIN Long, SHI Xin, DONG Huiyue, et al. Study on robot automatic drilling of carbon fiber reinforced plastics (CFRP)[J]. Advanced materials research, 2014, 889/890: 1144–1149.
[50] Hellstern C. Investigation of interlayer burr formation in the drilling of stacked aluminum sheets[J]. georgia institute of technology, 2009, 57(1): 33–46.
[51] MELKOTE S N, NEWTON T R, HELLSTERN C, et al. Interfacial Burr Formation in Drilling of Stacked Aerospace Materials[C]//Burrs-Analysis, Control and Removal. Berlin, Heidelberg: Springer, 2010: 89?98.
[52] KIM S J, JEON S M, NAM J K, et al. Closed-loop control of a self-positioning and rolling magnetic microrobot on 3D thin surfaces using biplane imaging[J]. IEEE transactions on magnetics, 2014, 50(11): 1–4.
[53] ERKORKMAZ K, ALZAYDI A, ELFIZY A, et al. Time-optimized hole sequence planning for 5-axis on-the-fly laser drilling[J]. CIRP annals, 2014, 63(1): 377–380.
[54] NUBIOLA A, BONEV I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and computer-integrated manufacturing, 2013, 29(1): 236–245.
[55] MA Le, BAZZOLI P, SAMMONS P M, et al. Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots[J]. Robotics and computer-integrated manufacturing, 2018, 50: 153–167.
[56] ZENG Yuanfan, TIAN Wei, LIAO Wenhe. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and computer-integrated manufacturing, 2016, 42: 113–120.
[57] ZENG Y, TIAN W, LI D, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The international journal of advanced manufacturing technology, 2016, 88(9-12): 2745–2755.
[58] TIAN Wei, ZENG Yuanfan, ZHOU Wei, et al. Calibration of robotic drilling systems with a moving rail[J]. Chinese journal of aeronautics, 2014, 27(6): 1598–1604.
[59] YUAN Peijiang, CHEN Dongdong, WANG Tianmiao, et al. A compensation method based on extreme learning machine to enhance absolute position accuracy for aviation drilling robot[J]. Advances in mechanical engineering, 2018, 10(3).https://doi.org/10.1177/1687814018763411
[60] SULZER J, KOVA? I. Enhancement of positioning accuracy of industrial robots with a reconfigurable fine-positioning module[J]. Precision engineering, 2010, 34(2): 201–217.
[61] LIU Hua, ZHU Weidong, DONG Huiyue, et al. An improved kinematic model for serial robot calibration based on local POE formula using position measurement[J]. Industrial robot:an international journal, 2018, 45(5): 573–584.
[62] ZHU Weidong, MEI Biao, YAN Guorui, et al. Development of a monocular vision system for robotic drilling[J]. Journal of Zhejiang University Science C, 2014, 15(8): 593–606.
[63] ZHU Weidong, MEI Biao, YAN Guorui, et al. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling[J]. Robotics and computer-integrated manufacturing, 2014, 30(2): 160–171.
[64] ZHAN Qiang, WANG Xiang. Hand-eye calibration and positioning for a robot drilling system[J]. The international journal of advanced manufacturing technology, 2012, 61(5/6/7/8): 691–701.
[65] LIU Yuanwei, YUAN Peijiang, CHEN Dongdong, et al. Simultaneous calibration of hand-eye relationship, robot-world relationship and robot geometric parameters with stereo vision[M]//Communications in Computer and Information Science. Singapore: Springer Singapore, 2017: 462?475.
[66] SEPEHR G, SHU Tingting, AHMED J, et al. Online pose correction of an industrial robot using an optical coordinate measure machine system[J]. International journal of advanced robotic systems, 2018, 15(4).https://doi.org/10.1177/1729881418787915.

备注/Memo

收稿日期:2021-06-30。
基金项目:国家自然科学基金项目(51475127);黑龙江省自然科学基金项目(QC2018064; JJ2022LH0716);普通高等学校创新人才培养计划(UNPYSCT-2018196)
作者简介:付鹏强,副教授,博士,中国机械工程学会生产工程分会(机床)委员会委员,中国振动工程学会动态测试专业委员会会员,主要研究方向为机器人自动制孔加工技术、精密超精密加工与检测技术。主持和参与国家科技重大专项、国家自然科学基金、黑龙江省自然科学基金、企事业委托项目等科研项目20余项。发表学术论文20余篇;苗宇航,硕士,主要研究方向为机器人加工、复合材料加工、动力电池设计。参与国家自然科学基金、黑龙江省自然科学基金等,专利10余项,发表学术论文3篇;王义文,教授,博士,黑龙江省刀具技术协会理事,中国振动工程学会动态测试专业委员会委员。主要研究方向为超硬材料加工、制造过程检测技术、机电产品开发。主持国家863项目、国家重大专项、黑龙江省应用技术研究项目等多个项目。发表学术 论文20余篇
通讯作者:付鹏强. E-mail:pqfu@hrbust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com