[1]周博文,熊伟丽.采用双层优选策略的主动学习算法及其应用[J].智能系统学报,2022,17(4):688-697.[doi:10.11992/tis.202106041]
 ZHOU Bowen,XIONG Weili.Active learning algorithm and its application based on a two-tier optimization strategy[J].CAAI Transactions on Intelligent Systems,2022,17(4):688-697.[doi:10.11992/tis.202106041]
点击复制

采用双层优选策略的主动学习算法及其应用

参考文献/References:
[1] MA Lei, FU Tengyu, LI Manchun. Active learning for object-based image classification using predefined training objects[J]. International journal of remote sensing, 2018, 39(9): 2746–2765.
[2] GU Yingjie, JIN Zhong, CHIU S C. Active learning combining uncertainty and diversity for multi-class image classification[J]. IET computer vision, 2015, 9(3): 400–407.
[3] 唐明珠, 阳春华, 桂卫华, 等. 基于代价敏感主动学习的氧化铝蒸发过程故障检测[J]. 化工学报, 2011, 62(8): 2108–2115
TANG Mingzhu, YANG Chunhua, GUI Weihua, et al. Fault detection using modified cost-sensitive active learning for alumina evaporation process[J]. CIESC journal, 2011, 62(8): 2108–2115
[4] YIN Lili, WANG Huangang, FAN Wenhui. Active learning based support vector data description method for robust novelty detection[J]. Knowledge-based systems, 2018, 153: 40–52.
[5] FU Yifan, ZHU Xingquan, LI Bin. A survey on instance selection for active learning[J]. Knowledge and information systems, 2013, 35(2): 249–283.
[6] SHI Xudong, XIONG Weili. Approximate linear dependence criteria with active learning for smart soft sensor design[J]. Chemometrics and intelligent laboratory systems, 2018, 180: 88–95.
[7] HUANG Gao, SONG Shiji, GUPTA J N D, et al. Semi-supervised and unsupervised extreme learning machines[J]. IEEE transactions on cybernetics, 2014, 44(12): 2405–2417.
[8] 周志华. 基于分歧的半监督学习[J]. 自动化学报, 2013, 39(11): 1871–1878
ZHOU Zhihua. Disagreement-based semi-supervised learning[J]. Acta automatica sinica, 2013, 39(11): 1871–1878
[9] 侯杰, 茅耀斌, 孙金生. 一种最大化样本可分性半监督Boosting算法[J]. 南京理工大学学报, 2014, 38(5): 675–681
HOU Jie, MAO Yaobin, SUN Jinsheng. Semi-supervised separability-maximum boosting[J]. Journal of Nanjing University of Science and Technology, 2014, 38(5): 675–681
[10] 曲昭伟, 吴春叶, 王晓茹. 半监督自训练的方面提取[J]. 智能系统学报, 2019, 14(4): 635–641
QU Zhaowei, WU Chunye, WANG Xiaoru. Aspects extraction based on semi-supervised self-training[J]. CAAI transactions on intelligent systems, 2019, 14(4): 635–641
[11] ZHANG Lijun, CHEN Chun, BU Jiajun, et al. Active learning based on locally linear reconstruction[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(10): 2026–2038.
[12] TONG S, KOLLER D. Support vector machine active learning with applications to text classification[J]. Journal of machine learning research, 2002, 2: 45–66.
[13] COHN D, ATLAS L, LADNER R. Improving generalization with active learning[J]. Machine learning, 1994, 15(2): 201–221.
[14] CAI Wenbin, ZHANG Muhan, ZHANG Ya. Batch mode active learning for regression with expected model change[J]. IEEE transactions on neural networks and learning systems, 2017, 28(7): 1668–1681.
[15] SUGIYAMA M, NAKAJIMA S. Pool-based active learning in approximate linear regression[J]. Machine learning, 2009, 75(3): 249–274.
[16] GE Zhiqiang. Active probabilistic sample selection for intelligent soft sensing of industrial processes[J]. Chemometrics and intelligent laboratory systems, 2016, 151: 181–189.
[17] TANG Qifeng, LI Dewei, XI Yugeng. A new active learning strategy for soft sensor modeling based on feature reconstruction and uncertainty evaluation[J]. Chemometrics and intelligent laboratory systems, 2018, 172: 43–51.
[18] DOUAK F, MELGANI F, ALAJLAN N, et al. Active learning for spectroscopic data regression[J]. Journal of chemometrics, 2012, 26(7): 374–383.
[19] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492–1496.
[20] DEMIR B, BRUZZONE L. A multiple criteria active learning method for support vector regression[J]. Pattern recognition, 2014, 47(7): 2558–2567.
[21] SUGIYAMA M. Active learning in approximately linear regression based on conditional expectation of generalization error[J]. Journal of machine learning research, 2006, 7: 141–166.
[22] 胡峰, 张苗, 于洪. 基于三支决策的主动学习方法[J]. 控制与决策, 2019, 34(4): 718–726
HU Feng, ZHANG Miao, YU Hong. An active learning method based on three-way decision model[J]. Control and decision, 2019, 34(4): 718–726
[23] WU Dongrui. Pool-based sequential active learning for regression[J]. IEEE transactions on neural networks and learning systems, 2019, 30(5): 1348–1359.
[24] RANJAN R, HUANG Biao, FATEHI A. Robust Gaussian process modeling using EM algorithm[J]. Journal of process control, 2016, 42: 125–136.
[25] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121–1129,1137
HE Zhikun, LIU Guangbin, ZHAO Xijing, et al. Overview of Gaussian process regression[J]. Control and decision, 2013, 28(8): 1121–1129,1137
[26] 李兴亮, 毛睿. 基于近期最远遍历的支撑点选择[J]. 南京大学学报(自然科学版), 2017, 53(3): 483–496
LI Xingliang, MAO Rui. Pivot selection on recent farthest traversal[J]. Journal of Nanjing University (natural sciences edition), 2017, 53(3): 483–496
[27] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788–800
CAO Pengfei, LUO Xionglin. Modeling of soft sensor for chemical process[J]. CIESC journal, 2013, 64(3): 788–800
[28] FORTUNA L, GRAZIANI S, XIBILIA M G. Soft sensors for product quality monitoring in debutanizer distillation columns[J]. Control engineering practice, 2005, 13(4): 499–508.
[29] WU Dongrui, LIN C T, HUANG Jian. Active learning for regression using greedy sampling[J]. Information sciences, 2019, 474: 90–105.
[30] YANG Jian, ZHAO Xin, WEI Haikun, et al. Sample selection based on active learning for short-term wind speed prediction[J]. Energies, 2019, 12(3): 337.
相似文献/References:
[1]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(3):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6():261.
[2]邓思宇,刘福伦,黄雨婷,等.基于PageRank的主动学习算法[J].智能系统学报,2019,14(3):551.[doi:10.11992/tis.201804052]
 DENG Siyu,LIU Fulun,HUANG Yuting,et al.Active learning through PageRank[J].CAAI Transactions on Intelligent Systems,2019,14():551.[doi:10.11992/tis.201804052]
[3]胡峰,李路正,代劲,等.结合聚类边界采样的主动学习[J].智能系统学报,2024,19(2):482.[doi:10.11992/tis.202205020]
 HU Feng,LI Luzheng,DAI Jin,et al.Active learning combined with clustering boundary sampling[J].CAAI Transactions on Intelligent Systems,2024,19():482.[doi:10.11992/tis.202205020]

备注/Memo

收稿日期:2021-06-25。
基金项目:国家自然科学基金项目(61773182); 国家重点研发计划子项目(2018YFC1603705-03).
作者简介:周博文,硕士研究生,主要研究方向为复杂工业过程建模;熊伟丽,教授,博士生导师,主要研究方向为复杂工业过程建模与监控、智能软测量技术。主持国家自然科学基金面上项目、国家自然科学基金青年项目、江苏省产学研等省部级以上纵向项目8项,授权发明专利近20项。发表学术论文90余篇,获中国商业联合会科技进步一等奖1项
通讯作者:熊伟丽. E-mail:greenpre@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com