[1]王凯旋,任福继,倪红军,等.基于循环互相关系数的CGAN温度值图像扩增[J].智能系统学报,2022,17(1):32-40.[doi:10.11992/tis.202106036]
 WANG Kaixuan,REN Fuji,NI Hongjun,et al.Image amplification for temperature value image based on cyclic cross-correlation coefficient CGAN[J].CAAI Transactions on Intelligent Systems,2022,17(1):32-40.[doi:10.11992/tis.202106036]
点击复制

基于循环互相关系数的CGAN温度值图像扩增

参考文献/References:
[1] 蒲天骄, 乔骥, 韩笑, 等. 人工智能技术在电力设备运维检修中的研究及应用[J]. 高电压技术, 2020, 46(2): 369–383.
PU Tianjiao, QIAO Ji, HAN Xiao, et al. Research and application of artificial intelligence in operation and maintenance for power equipment[J]. High voltage engineering, 2020, 46(2): 369–383.
[2] CHEN Junwen, LIU Zhigang, WANG Hongrui, et al. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network[J]. IEEE transactions on instrumentation and measurement, 2018, 67(2): 257–269.
[3] 王有元, 李后英, 梁玄鸿, 等. 基于红外图像的变电设备热缺陷自调整残差网络诊断模型[J]. 高电压技术, 2020, 46(9): 3000–3007.
WANG Youyuan, LI Houying, LIANG Xuanhong, et al. Self-adjusting residual network diagnosis model for substation equipment thermal defects based on infrared image[J]. High voltage engineering, 2020, 46(9): 3000–3007.
[4] 何佳美. 基于生成对抗网络的电力设备图像扩充模型及算法研究[D]. 成都: 电子科技大学, 2020: 1–60.
HE Jiamei. Research on image expansion model and algorithm of power equipment based on generative adversarial network[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 1–60.
[5] 黄锐勇, 戴美胜, 郑跃斌, 等. 电力设备红外图像缺陷检测[J]. 中国电力, 2021, 54(2): 147–155.
HUANG Ruiyong, DAI Meisheng, ZHENG Yuebin, et al. Defect detection of power equipment by infrared image[J]. Electric power, 2021, 54(2): 147–155.
[6] CAO Xinhua, LI Taihao, LI Hongli, et al. A robust parameter-free thresholding method for image segmentation[J]. IEEE access, 2018, 7: 3448–3458.
[7] 毕晓君, 潘梦迪. 基于生成对抗网络的机载遥感图像超分辨率重建[J]. 智能系统学报, 2020, 15(1): 74–83.
BI Xiaojun, PAN Mengdi. Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J]. CAAI transactions on intelligent systems, 2020, 15(1): 74–83.
[8] REN Fuji, LIU Wenjie, WU Guoqing. Feature reuse residual networks for insect pest recognition[J]. IEEE access, 2019, 7: 122758–122768.
[9] HUANG Zhong, REN Fuji. Facial expression recognition based on multi-regional D-S evidences theory fusion[J]. IEEJ transactions on electrical and electronic engineering, 2017, 12(2): 251–261.
[10] YI Zili, CHEN Zhiqin, CAI Hao, et al. BSD-GAN: branched generative adversarial network for scale-disentangled representation learning and image synthesis[J]. IEEE transactions on image processing, 2020, 29: 9073–9083.
[11] GOODFELLO I J, POUGET ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM. 2020, 63(11): 139–144.
[12] undefinedHAN Wei, WANG Lizhe, FENG Ruyi, et al. Sample generation based on a supervised wasserstein generative adversarial network for high-resolution remote-sensing scene classification[J]. Information sciences, 2020, 539: 177–194.
[13] SONG Jingkuan, HE Tao, GAO Lianli, et al. Unified binary generative adversarial network for image retrieval and compression[J]. International journal of computer vision, 2020, 128(8): 2243–2264.
[14] undefinedGUO Runyuan, LIU Han, XIE Guo, et al. Weld defect detection from imbalanced radiographic images based on contrast enhancement conditional generative adversarial network and transfer learning[J]. IEEE sensors journal, 2021, 21(9): 10844–10853.
[15] LI Jiaosheng, LI Yuhui, LI Ju, et al. Single exposure optical image watermarking using a cGAN network[J]. IEEE photonics journal, 2021, 13(2): 6900111.
[16] 黄远, 白琮, 李宏凯, 等. 基于条件生成对抗网络的图像描述生成方法[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 911–918.
HUANG Yuan, BAI Cong, LI Hongkai, et al. Image captioning based on conditional generative adversarial Nets[J]. Journal of Computer-aided design & computer graphics, 2020, 32(6): 911–918.
[17] 于文家, 丁世飞. 基于自注意力机制的条件生成对抗网络[J]. 计算机科学, 2021, 48(1): 241–246.
YU Wenjia, DING Shifei. Conditional generative adversarial network based on self-attention mechanism[J]. Computer science, 2021, 48(1): 241–246.
[18] 陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2): 347–369.
CHEN Foji, ZHU Feng, WU Qingxiao, et al. A survey about image generation with generative adversarial nets[J]. Chinese journal of computers, 2021, 44(2): 347–369.
[19] 朱奇光, 张朋珍, 李昊立, 等. 基于全局和局部特征融合的图像匹配算法研究[J]. 仪器仪表学报, 2016, 37(1): 170–176.
ZHU Qiguang, ZHANG Pengzhen, LI Haoli, et al. Investigation on the image matching algorithm based on global and local feature fusion[J]. Chinese journal of scientific instrument, 2016, 37(1): 170–176.
[20] TANG Fashuai, GAO Qi, DU Zongzhan. Algorithm of object localization applied on high-voltage power transmission lines based on line stereo matching[J]. Optical engineering, 2021, 60(2): 023101.
[21] 曹玉东, 蔡希彪. 基于增强型对抗学习的无参考图像质量评价算法[J]. 计算机应用, 2020, 40(11): 3166–3171.
CAO Yudong, CAI Xibiao. No-reference image quality assessment algorithm with enhanced adversarial learning[J]. Journal of computer applications, 2020, 40(11): 3166–3171.
[22] 方玉明, 眭相杰, 鄢杰斌, 等. 无参考图像质量评价研究进展[J]. 中国图象图形学报, 2021, 26(2): 265–286.
FANG Yuming, SUI Xiangjie, YAN Jiebin, et al. Progress in no-reference image quality assessment[J]. Journal of image and graphics, 2021, 26(2): 265–286.
[23] 王耀领, 王宏琦, 许滔. CGAN样本生成的遥感图像飞机识别[J]. 中国图象图形学报, 2021, 26(3): 663–673.
WANG Yaoling, WANG Hongqi, XU Tao. Aircraft recognition of remote sensing image based on sample generated by CGAN[J]. Journal of image and graphics, 2021, 26(3): 663–673.
[24] 王伟, 刘辉, 杨俊安. 一种特征字典映射的图像盲评价方法研究[J]. 智能系统学报, 2018, 13(6): 989–993.
WANG Wei, LIU Hui, YANG Jun’an. Blind quality evaluation with image features codebook mapping[J]. CAAI transactions on intelligent systems, 2018, 13(6): 989–993.
[25] 祝钧桃, 姚光乐, 张葛祥, 等. 深度神经网络的小样本学习综述[J]. 计算机工程与应用, 2021, 57(7): 22–33.
ZHU Juntao, YAO Guangle, ZHANG Gexiang, et al. Survey of few shot learning of deep neural network[J]. Computer engineering and applications, 2021, 57(7): 22–33.
相似文献/References:
[1]王凯旋,任福继,倪红军,等.面向电力设备红外图像的温度值识别算法[J].智能系统学报,2022,17(3):617.[doi:10.11992/tis.202105043]
 WANG Kaixuan,REN Fuji,NI Hongjun,et al.Temperature value recognition algorithm for the infrared image of power equipment[J].CAAI Transactions on Intelligent Systems,2022,17():617.[doi:10.11992/tis.202105043]

备注/Memo

收稿日期:2021-06-29。
基金项目:江苏高校优势学科建设工程项目(PAPD);德岛大学研究集群项目(2003002).
作者简介:王凯旋,硕士研究生,主要研究方向为电力设备缺陷检测和图像处理;任福继,教授,博士,日本工程院院士、欧盟科学院院士,中国人工智能学会名誉副理事长、日本工学会、IEICE、CAAIFellow,日本国际先进信息研究所的主席,主要研究方向为人工智能、情感计算、自然言语理解、模式识别。获吴文俊人工智能科学技术奖创新一等奖等,主持德岛大学研究集群项目,申请发明专利10余项。发表学术论文500余篇;倪红军,教授,博士,现任南通大学张謇学院院长,中国有色金属协会再生金属分会学术委员会委员,中国再生资源产业技术创新战略联盟理事,主要研究方向为新能源新材料及装备技术、人工智能。主持和参与科研项目40余项,申请发明专利70余项,获授权37项,成功转让发明专利14项。发表学术论文70余篇
通讯作者:倪红军. E-mail:ni.hj@ntu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com