[1]何杭轩,段海滨,张秀林,等.基于扩张鸽群优化的舰载无人机横侧向着舰自主控制[J].智能系统学报,2022,17(1):151-157.[doi:10.11992/tis.202106035]
 HE Hangxuan,DUAN Haibin,ZHANG Xiulin,et al.Lateral automatic carrier landing control based on expanded pigeon inspired optimization[J].CAAI Transactions on Intelligent Systems,2022,17(1):151-157.[doi:10.11992/tis.202106035]
点击复制

基于扩张鸽群优化的舰载无人机横侧向着舰自主控制

参考文献/References:
[1] ZHU Qidan, YANG Zhibo. Design of air-wake rejection control for longitudinal automatic carrier landing cyber-physical system[J]. Computers & electrical engineering, 2020, 84: 106637.
[2] KOO S, KIM S, SUK J. Model predictive control for UAV automatic landing on moving carrier deck with heave motion[J]. IFAC-PapersOnLine, 2015, 48(5): 59–64.
[3] 马坤. 基于预见控制的无人机着舰控制研究[D]. 南京: 南京航空航天大学, 2017.
MA Kun. Research on preview control based carrier landing control for unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
[4] ZHEN Ziyang, JIANG Shuoying, MA Kun. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering[J]. Aerospace science and technology, 2018, 81: 99–107.
[5] GUAN Zhiyuan, LIU Hu, ZHENG Zewei, et al. Fixed-time control for automatic carrier landing with disturbance[J]. Aerospace science and technology, 2021, 108: 106403.
[6] 赵东宏. 大展弦比无人机自动着舰技术研究[D]. 南京: 南京航空航天大学, 2018.
ZHAO Donghong. The research of carrier landing control of the high-aspect-ratio UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[7] LIU Cunjia, CHEN Wenhua, ANDREWS J. Explicit non-linear model predictive control for autonomous helicopters[J]. Proceedings of the institution of mechanical engineers, part G:journal of aerospace engineering, 2012, 226(9): 1171–1182.
[8] HU Xioabing, CHEN CHEN Wenhua. Model predictive control for non-linear missiles[J]. Proceedings of the institution of mechanical engineers, part I:journal of systems and control engineering, 2007, 221(8): 1077–1089.
[9] SLEGERS N, KYLE J, COSTELLO M. Nonlinear model predictive control technique for unmanned air vehicles[J]. Journal of guidance, control, and dynamics, 2006, 29(5): 1179–1188.
[10] DUAN Haibin, QIAO Peixin. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. International journal of intelligent computing and cybernetics, 2014, 7(1): 24–37.
[11] DUAN Haibin, QIU Huaxin. Advancements in pigeon-inspired optimization and its variants[J]. Science China information sciences, 2019, 62(7): 1–10.
[12] DUAN Haibin, WANG Xiaohua. Echo state networks with orthogonal pigeon-inspired optimization for image restoration[J]. IEEE transactions on neural networks and learning systems, 2016, 27(11): 2413–2425.
[13] XU Xiaobin, DENG Yimin. UAV power component—DC brushless motor design with merging adjacent-disturbances and integrated-dispatching pigeon-inspired optimization[J]. IEEE transactions on magnetics, 2018, 54(8): 1–7.
[14] SUN Yongbin, DUAN Haibin, XIAN Ning. Fractional-order controllers optimized via heterogeneous comprehensive learning pigeon-inspired optimization for autonomous aerial refueling hose-drogue system[J]. Aerospace science and technology, 2018, 81: 1–13.
[15] QIU Huaxin, DUAN Haibin. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles[J]. Information sciences, 2020, 509: 515–529.
[16] HUO Mengzhen, DUAN Haibin. An adaptive mutant multi-objective pigeon-inspired optimization for unmanned aerial vehicle target search problem[J]. Control theory & applications, 2020, 37(3): 584-591.
[17] 江驹, 王新华, 甄子洋. 舰载机起飞着舰引导与控制[M]. 北京: 科学出版社, 2019.
[18] 徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报, 2020, 41(8): 323722
XU Bo, ZHANG Dalong. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta aeronautica et astronautica sinica, 2020, 41(8): 323722
[19] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46–61.
[20] 於家鹏, 苏本如, 余滋红. 船舶运动极短期预报研究[J]. 舰船科学技术, 1995, 17(1): 10–15
YU Jiapeng, SU Benru, YU Zihong. Research on extremely short-term prediction of ship motion[J]. Ship science and technology, 1995, 17(1): 10–15
相似文献/References:
[1]向宏程,邓亦敏,段海滨.基于探索群策略鸽群优化的高超声速飞行器飞/发一体化控制[J].智能系统学报,2022,17(4):849.[doi:10.11992/tis.202205033]
 XIANG Hongcheng,DENG Yimin,DUAN Haibin.Integrated control of hypersonic aerial vehicle and engine system based on exploring swarm strategy based pigeon inspired optimization[J].CAAI Transactions on Intelligent Systems,2022,17():849.[doi:10.11992/tis.202205033]
[2]吴启龙,朱齐丹.基于线性自抗扰控制的纵向舰载机直接升力全自动着舰控制[J].智能系统学报,2024,19(1):142.[doi:10.11992/tis.202304047]
 WU Qilong,ZHU Qidan.Direct lift fully-automatic landing control of longitudinal carrier-based aircraft on basis of linear active disturbance rejection control[J].CAAI Transactions on Intelligent Systems,2024,19():142.[doi:10.11992/tis.202304047]

备注/Memo

收稿日期:2021-06-21。
基金项目:国家自然科学基金项目(91948204, U20B2071, T2121003, U1913602, U19B2033);科技创新2030-“新一代人工智能”重大项目(2018AAA0102403).
作者简介:何杭轩,硕士研究生,主要研究方向为群体智能、无人机自主控制;段海滨,教授,博士生导师,主要研究方向为无人机集群自主控制、计算机仿生视觉与智能感知、仿生智能计算理论及应用。主持国家自然基金重大研究计划重点项目、重点项目、面上项目等7 项,出版专著 4部;张秀林,研究员,型号副总设计师,主要研究方向为飞行控制律设计、飞机操纵性与稳定性分析。
通讯作者:段海滨. E-mail:hbduan@buaa.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com