[1]何杭轩,段海滨,张秀林,等.基于扩张鸽群优化的舰载无人机横侧向着舰自主控制[J].智能系统学报,2022,17(1):151-157.[doi:10.11992/tis.202106035]
HE Hangxuan,DUAN Haibin,ZHANG Xiulin,et al.Lateral automatic carrier landing control based on expanded pigeon inspired optimization[J].CAAI Transactions on Intelligent Systems,2022,17(1):151-157.[doi:10.11992/tis.202106035]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第1期
页码:
151-157
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2022-01-05
- Title:
-
Lateral automatic carrier landing control based on expanded pigeon inspired optimization
- 作者:
-
何杭轩1, 段海滨1,2, 张秀林3, 邓亦敏1
-
1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
2. 鹏城实验室, 广东 深圳 518000;
3. 中国航空工业集团公司 沈阳飞机设计研究所, 辽宁 沈阳 110035
- Author(s):
-
HE Hangxuan1, DUAN Haibin1,2, ZHANG Xiulin3, DENG Yimin1
-
1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
2. Peng Cheng Laboratory, Shenzhen 518000, China;
3. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China
-
- 关键词:
-
自动着舰; 鸽群优化; 姿态控制; 舰尾流; 甲板运动; 显式模型预测; 着舰; 扩张鸽群优化
- Keywords:
-
automatic carrier landing; pigeon inspired optimization; attitude control; carrier air wake; deck motion; explicit model predictive control; carrier landing; expanded pigeon inspired optimization
- 分类号:
-
TP391;V249.122
- DOI:
-
10.11992/tis.202106035
- 摘要:
-
舰载无人机着舰会受到舰尾流、航母甲板运动的干扰。为加快无人机在着舰时横侧向响应以及提高舰载机着舰对干扰的鲁棒性,本文提出了一种基于扩张鸽群优化算法的显式模型预测控制方法,并将其应用于舰载机姿态控制器设计,用于解决所设计控制器的参数优化问题。与基本鸽群优化算法、粒子群算法的仿真对比实验表明,相比传统智能优化算法,本文所提出的扩张鸽群优化算法收敛更快,普适性和稳定性也更强,采用显式模型预测控制的舰载无人机着舰系统相比比例-积分-微分控制下的系统响应更快,鲁棒性更强。
- Abstract:
-
Carrier landing of unmanned aerial vehicles (UAV) can be disturbed by carrier air wake and deck motion. To improve the response speed and disturbance rejection ability of UAV carrier landing, this paper proposes an explicit model predictive control method based on expanded pigeon inspired optimization (EPIO), and apply it in the design of carrier attitude controler to solve parameter optimization problem of the designed controler. Simulations and comparative experiments are conducted on the proposed basic pigeon inspired optimization algorithm and the particle swarm optimization algorithm, which show quicker rate of convergence, stronger universality and stability of EPIO. The designed control method is verified to be faster and more robust after compared with the proportional-integral-derivative control method.
备注/Memo
收稿日期:2021-06-21。
基金项目:国家自然科学基金项目(91948204, U20B2071, T2121003, U1913602, U19B2033);科技创新2030-“新一代人工智能”重大项目(2018AAA0102403).
作者简介:何杭轩,硕士研究生,主要研究方向为群体智能、无人机自主控制;段海滨,教授,博士生导师,主要研究方向为无人机集群自主控制、计算机仿生视觉与智能感知、仿生智能计算理论及应用。主持国家自然基金重大研究计划重点项目、重点项目、面上项目等7 项,出版专著 4部;张秀林,研究员,型号副总设计师,主要研究方向为飞行控制律设计、飞机操纵性与稳定性分析。
通讯作者:段海滨. E-mail:hbduan@buaa.edu.cn
更新日期/Last Update:
1900-01-01