[1]窦勇敢,袁晓彤.基于隐式随机梯度下降优化的联邦学习[J].智能系统学报,2022,17(3):488-495.[doi:10.11992/tis.202106029]
DOU Yonggan,YUAN Xiaotong.Federated learning with implicit stochastic gradient descent optimization[J].CAAI Transactions on Intelligent Systems,2022,17(3):488-495.[doi:10.11992/tis.202106029]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第3期
页码:
488-495
栏目:
学术论文—机器学习
出版日期:
2022-05-05
- Title:
-
Federated learning with implicit stochastic gradient descent optimization
- 作者:
-
窦勇敢1,2, 袁晓彤1,2
-
1. 南京信息工程大学 自动化学院,江苏 南京 210044;
2. 江苏省大数据分析技术重点实验室,江苏 南京 210044
- Author(s):
-
DOU Yonggan1,2, YUAN Xiaotong1,2
-
1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing 210044, China
-
- 关键词:
-
联邦学习; 分布式机器学习; 中央服务器; 全局模型; 隐式随机梯度下降; 数据异构; 系统异构; 优化算法; 快速收敛
- Keywords:
-
federated learning; distributed machine learning; central server; global model; implicit stochastic gradient descent; statistical heterogeneity; systems heterogeneity; optimization algorithm; faster convergence
- 分类号:
-
TP8
- DOI:
-
10.11992/tis.202106029
- 摘要:
-
联邦学习是一种分布式机器学习范式,中央服务器通过协作大量远程设备训练一个最优的全局模型。目前联邦学习主要存在系统异构性和数据异构性这两个关键挑战。本文主要针对异构性导致的全局模型收敛慢甚至无法收敛的问题,提出基于隐式随机梯度下降优化的联邦学习算法。与传统联邦学习更新方式不同,本文利用本地上传的模型参数近似求出平均全局梯度,同时避免求解一阶导数,通过梯度下降来更新全局模型参数,使全局模型能够在较少的通信轮数下达到更快更稳定的收敛结果。在实验中,模拟了不同等级的异构环境,本文提出的算法比FedProx和FedAvg均表现出更快更稳定的收敛结果。在相同收敛结果的前提下,本文的方法在高度异构的合成数据集上比FedProx通信轮数减少近50%,显著提升了联邦学习的稳定性和鲁棒性。
- Abstract:
-
Federated learning is a distributed machine learning paradigm. The central server trains an optimal global model by collaborating with numerous remote devices. Presently, there are two key challenges faced by federated learning: system and statistical heterogeneities. Herein, we mainly focus on the slow convergence of the global model or when it even fails to converge due to system and statistical heterogeneities. We propose a federated learning optimization algorithm based on implicit stochastic gradient descent optimization, which is different from the traditional method of updating in federated learning. We use the locally uploaded model parameters to approximate the average global gradient and to avoid solving the first-order and update the global model parameter via gradient descent. This is performed so that the global model can achieve faster and more stable convergence results with fewer communication rounds. In the experiment, different levels of heterogeneous settings were simulated. The proposed algorithm shows considerably faster and more stable convergence behavior than FedAvg and FedProx. In the premise of the same convergence results, the experimental results show that the proposed method reduces the number of communication rounds by approximately 50% compared with Fedprox in highly heterogeneous synthetic datasets. This considerably improves the stability and robustness of federated learning.
备注/Memo
收稿日期:2021-06-18。
基金项目:国家自然科学基金项目(61876090,61936005);科技创新2030–“新一代人工智能”重大项目(2018AAA0100400).
作者简介:窦勇敢,硕士研究生,主要研究方向为联邦学习、语义分割;袁晓彤,教授,博士生导师,中国计算机学会计算机视觉专委会委员,中国自动化学会模式识别与机器智能专委会委员,IEEE会员,主要研究方向为机器学习和计算机视觉。入选江苏省双创人才。发表学术论文80余篇
通讯作者:袁晓彤.E-mail:xtyuan1980@gmail.com
更新日期/Last Update:
1900-01-01