[1]亢洁,刘威.面向装修案例智能匹配的跨模态检索方法[J].智能系统学报,2022,17(4):714-720.[doi:10.11992/tis.202106012]
 KANG Jie,LIU Wei.A crossmodal retrieval method for intelligent matching of decoration cases[J].CAAI Transactions on Intelligent Systems,2022,17(4):714-720.[doi:10.11992/tis.202106012]
点击复制

面向装修案例智能匹配的跨模态检索方法

参考文献/References:
[1] CAO Da, YU Zhiwang, ZHANG Hanling, et al. Video-based cross-modal recipe retrieval[C]//MM ’19: Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1685?1693.
[2] 李佳敏, 刘兴波, 聂秀山, 等. 三元组深度哈希学习的司法案例相似匹配方法[J]. 智能系统学报, 2020, 15(6): 1147–1153
LI Jiamin, LIU Xingbo, NIE Xiushan, et al. Triplet deep Hashing learning for judicial case similarity matching method[J]. CAAI transactions on intelligent systems, 2020, 15(6): 1147–1153
[3] MORIK M, SINGH A, HONG J, et al. Controlling fairness and bias in dynamic learning-to-rank[C]//SIGIR ’20: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 429?438.
[4] WU Fei, JING Xiaoyuan, WU Zhiyong, et al. Modality-specific and shared generative adversarial network for cross-modal retrieval[J]. Pattern recognition, 2020, 104: 107335.
[5] WANG Zihao, LIU Xihui, LI Hongsheng, et al. CAMP: cross-modal adaptive message passing for text-image retrieval[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 5764?5773.
[6] PENG Yuxin, HUANG Xin, ZHAO Yunzhen. An overview of cross-media retrieval: concepts, methodologies, benchmarks, and challenges[J]. IEEE transactions on circuits and systems for video technology, 2017, 28(9): 2372–2385.
[7] RASIWASIA N, PEREIRA J C, COVIELLO E, et al. A new approach to cross-modal multimedia retrieval[C]//MM ’10: Proceedings of the 18th ACM international conference on Multimedia. New York: ACM, 2010: 251?260.
[8] KAN Meina, SHAN Shiguang, ZHANG Haihong, et al. Multi-view discriminant analysis[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 38(1): 188–194.
[9] ZHAI Xiaohua, PENG Yuxin, XIAO Jianguo. Learning cross-media joint representation with sparse and semisupervised regularization[J]. IEEE transactions on circuits and systems for video technology, 2013, 24(6): 965–978.
[10] PENG Yuxin, QI Jinwei, HUANG Xin, et al. CCL: cross-modal correlation learning with multigrained fusion by hierarchical network[J]. IEEE transactions on multimedia, 2017, 20(2): 405–420.
[11] ZHANG Yifan, ZHOU Wengang, WANG Min, et al. Deep relation embedding for cross-modal retrieval[J]. IEEE transactions on image processing, 2020, 30: 617–627.
[12] CHEN Shizhe, ZHAO Yida, JIN Qin, et al. Fine-grained video-text retrieval with hierarchical graph reasoning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10635?10644.
[13] WEI Yunchao, ZHAO Yao, LU Canyi, et al. Cross-modal retrieval with CNN visual features: a new baseline[J]. IEEE transactions on cybernetics, 2016, 47(2): 449–460.
[14] WANG Bokun, YANG Yang, XU Xing, et al. Adversarial cross-modal retrieval[C]//MM ’17: Proceedings of the 25th ACM international conference on Multimedia. New York: ACM, 2017: 154?162.
[15] ZHEN Liangli, HU Peng, WANG Xu, et al. Deep supervised cross-modal retrieval[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 10386-10395.
[16] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. New York: arXiv, 2018. (2018?10?11)[2021?06?06].https://arxiv.org/abs/1810.04805.
[17] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2414?2423.
[18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. San Diego: Mendeley, 2015: 1768?1776.
[19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999?3007.

备注/Memo

收稿日期:2021-06-08。
基金项目:陕西省重点研发计划项目(2021GY-022);西安市科技计划项目(2019216514GXRC001CG002-GXYD1.7);国家留学基金项目(201708615011).
作者简介:亢洁,副教授,主要研究方向为机器学习、模式识别。近年主持和参与教学科研项目20余项,授权发明专利2项。发表学术论文20余篇;刘威,硕士研究生,主要研究方向为数字图像处理、多模态表示学习
通讯作者:亢洁. E-mail:kangjie@sust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com