[1]亢洁,刘威.面向装修案例智能匹配的跨模态检索方法[J].智能系统学报,2022,17(4):714-720.[doi:10.11992/tis.202106012]
KANG Jie,LIU Wei.A crossmodal retrieval method for intelligent matching of decoration cases[J].CAAI Transactions on Intelligent Systems,2022,17(4):714-720.[doi:10.11992/tis.202106012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第4期
页码:
714-720
栏目:
学术论文—自然语言处理与理解
出版日期:
2022-07-05
- Title:
-
A crossmodal retrieval method for intelligent matching of decoration cases
- 作者:
-
亢洁, 刘威
-
陕西科技大学 电气与控制工程学院,陕西 西安 710021
- Author(s):
-
KANG Jie, LIU Wei
-
School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
-
- 关键词:
-
文本信息; 风格; 装修案例; 家装客服系统; 智能匹配; 跨模态检索; 风格聚合; 双重损失函数
- Keywords:
-
text information; style; decoration cases; the customer service system for home decoration; intelligent matching; crossmodal retrieval; style aggregation; dual loss function
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202106012
- 摘要:
-
根据用户输入的文本信息为其实时推送相应风格的装修案例是家装客服系统中的重要功能。然而,目前该功能的实现主要依赖于人工方式,不仅不能满足用户对咨询服务快捷、及时的需求,还增加了企业的人力成本。为此,提出了一种面向装修案例智能匹配的跨模态检索方法。针对现有算法难以直接建立文本与装修案例之间的对应关系这一问题,设计了一种风格聚合模块,可以获取一组装修案例统一的风格特征,从而便于后续网络建立文本与装修案例之间的潜在语义关联,实现两者间的跨模态匹配。同时,在关注图像模态中难易样本分类问题的基础上,构建了一种双重损失函数对模型进行训练。实验结果表明,本文提出的方法在装修案例多模态数据集上取得了较好的检索效果。
- Abstract:
-
An important function in the customer service system for home decoration is providing users with decoration cases of corresponding styles in real-time based on the text information input by users. However, the current realization of this function mainly relies on the manual method, which not only fails to meet users’ demand for quick and timely consulting services but also increases the labor cost of enterprises. This paper proposes a crossmodal retrieval method for intelligent matching of decoration cases to that end. Aiming at the problem that the existing algorithms cannot directly establish the correspondence between texts and decoration cases, a style aggregation module is designed to obtain the uniform style feature of a set of decoration cases, to facilitate the subsequent network to establish a potential semantic relationship between texts and decoration cases and realize crossmodal matching between them. Simultaneously, a dual loss function is constructed to train the model based on the problem of classifying difficult and easy samples in the imaging modality. The experimental results show that the method proposed in this paper achieves better retrieval results on the multimodal dataset of decoration cases.
更新日期/Last Update:
1900-01-01