[1]昝英飞,邱天,袁利毫,等.水下狭窄环境中ROV的自主返回控制[J].智能系统学报,2022,17(4):744-751.[doi:10.11992/tis.202105032]
ZAN Yingfei,QIU Tian,YUAN Lihao,et al.Autonomous remotely operated vehicle return control in a narrow underwater environment[J].CAAI Transactions on Intelligent Systems,2022,17(4):744-751.[doi:10.11992/tis.202105032]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第4期
页码:
744-751
栏目:
学术论文—智能系统
出版日期:
2022-07-05
- Title:
-
Autonomous remotely operated vehicle return control in a narrow underwater environment
- 作者:
-
昝英飞1, 邱天1, 袁利毫1, 王会峰2, 黄福祥2, 阴炳钢2
-
1. 哈尔滨工程大学 船舶工程学院,黑龙江 哈尔滨 150001;
2. 海洋石油工程股份有限公司,天津 300450
- Author(s):
-
ZAN Yingfei1, QIU Tian1, YUAN Lihao1, WANG Huifeng2, HUANG Fuxiang2, YIN Bingang2
-
1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China;
2. Offshore Oil Engineering Co., LTD, Tianjin 300450, China
-
- 关键词:
-
缆控水下机器人; 狭窄环境; 路径跟踪; 动力定位; 数值仿真; 李雅普诺夫函数; 反步自适应; 视线导引算法
- Keywords:
-
remotely operated vehicle; narrow environment; path following; dynamic positioning; numerical simulation; Lyapunov function; backstepping adaptive; line-of-sight guidance algorithm
- 分类号:
-
TP242.6
- DOI:
-
10.11992/tis.202105032
- 摘要:
-
为满足缆控水下机器人(remotely operated vehicle,ROV)在水下狭窄环境中作业完毕后的顺利回收需求,研究仿真ROV的路径跟踪以及动力定位系统。基于非对称ROV构建数学模型,利用李雅普诺夫函数,采用反向递推和反馈线性化,设计了基于反步法的自适应控制器。该控制器通过反馈线性化,将已知非线性参数转化成线性参数,不确定的非线性参数应用自适应控制律进行放宽。通过仿真对该控制器应用于ROV的可行性进行验证表明:基于反步自适应控制以及视线导引的算法,ROV在水下狭窄环境中路径跟踪效果良好,动力定位稳定,鲁棒性良好,能够很好地解决ROV模型的不确定性与非线性问题。该控制器为ROV在水下狭窄环境中的回收作业提供了很好的解决方案。
- Abstract:
-
The path following and dynamic positioning systems of the simulated remotely operated vehicle (ROV) were studied to meet the successful recovery requirements of the ROV after the completion of the operation in the narrow underwater environment. On the basis of a mathematical model built by asymmetric ROV, an adaptive controller based on the backstepping method was designed using the Lyapunov function, reverse recursion, and feedback linearization. Feedback linearization converts known nonlinear parameters into linear parameters, while adaptive control laws relax uncertain nonlinear parameters. The feasibility of applying the controller to the ROV was verified by simulation. Based on the backstepping adaptive control and line-of-sight guidance algorithm, the ROV has a good path following effect in the narrow underwater environment, good robustness, and stable dynamic positioning, which can well solve the uncertainty and nonlinear problems of the ROV’s model. This controller provides an excellent solution for ROV recovery in a narrow underwater environment.
备注/Memo
收稿日期:2021-05-21。
基金项目:国家重点研发计划项目(2018YFC0309401);黑龙江省博士后基金项目(LBH-Z19054);陵水半潜式生产平台研究专项项目(LSZX-2020-HN-02).
作者简介:昝英飞,副教授,博士生导师,主要研究方向为数字孪生技术、船舶与海洋工程作业仿真、水下机器人运动建模与仿真技术、船舶运动建模与仿真技术、海洋工程作业数学模型与仿真技术、实时仿真技术。申请发明专利及软件著作权15项,发表学术论文 40余篇;邱天,硕士研究生,主要研究方向为水下机器人运动控制仿真;袁利毫,教授,博士生导师,主要研究方向为舰船数字化与仿真、船海装备数字孪生、计算可视化仿真。获省部级科技进步一等奖1项、二等奖4项、三等奖3项。发表学术论文30余篇,出版专著2部。
通讯作者:袁利毫. E-mail:yuanlihao@hrbeu.edu.cn
更新日期/Last Update:
1900-01-01