[1]刘扬,王立虎,杨礼波,等.改进EEMD-GRU混合模型在径流预报中的应用[J].智能系统学报,2022,17(3):480-487.[doi:10.11992/tis.202105010]
 LIU Yang,WANG Lihu,YANG Libo,et al.Application of improved EMD-GRU hybrid model in runoff forecasting[J].CAAI Transactions on Intelligent Systems,2022,17(3):480-487.[doi:10.11992/tis.202105010]
点击复制

改进EEMD-GRU混合模型在径流预报中的应用

参考文献/References:
[1] LIU Lüliu, XIAO Chan, DU Liangmin, et al. Extended-range runoff forecasting using a one-way coupled climate–hydrological model: case studies of the Yiluo and Beijiang Rivers in China[J]. Water, 2019, 11(6): 1150.
[2] WANG Jida, SHENG Yongwei, TONG T S D. Monitoring decadal lake dynamics across the Yangtze Basin downstream of Three Gorges Dam[J]. Remote sensing of environment, 2014, 152: 251–269.
[3] LIANG Zhongmin, LI Yujie, HU Yiming, et al. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework[J]. Theoretical and applied climatology, 2018, 133(1/2): 137–149.
[4] SONG Peibing, LIU Weifeng, SUN Jiahui, et al. Annual runoff forecasting based on multi-model information fusion and residual error correction in the Ganjiang river basin[J]. Water, 2020, 12(8): 2086.
[5] CHU Haibo, WEI Jiahua, LI Jiaye, et al. Improved medium-and long-term runoff forecasting using a multimodel approach in the Yellow River headwaters region based on large-scale and local-scale climate information[J]. Water, 2017, 9(8): 608.
[6] 梁浩, 黄生志, 孟二浩, 等. 基于多种混合模型的径流预测研究[J]. 水利学报, 2020, 51(1): 112–125
LIANG Hao, HUANG Shengzhi, MENG Erhao, et al. Runoff prediction based on multiple hybrid models[J]. Journal of hydraulic engineering, 2020, 51(1): 112–125
[7] WU Jian, LIU Haixing, WEI Guozhen, et al. Flash flood forecasting using support vector regression model in a small mountainous catchment[J]. Water, 2019, 11(7): 1327.
[8] KOVA?EVI? M, IVANI?EVI? N, DA?I? T, et al. Application of artificial neural networks for hydrological modelling in karst[J]. Gra?evinar, 2018, 70(1): 1–10.
[9] YUAN Ximin, ZHANG Xingyuan, TIAN Fuchang. Research and application of an intelligent networking model for flood forecasting in the arid mountainous basins[J]. Journal of flood risk management, 2020, 13(3): e12638.
[10] LV Zhihua, ZUO Junjie, RODRIGUEZ D. Predicting of runoff using an optimized SWAT-ANN: a case study[J]. Journal of hydrology:regional studies, 2020, 29: 100688.
[11] LIU Darong, JIANG Wenchao, MU Lin, et al. Streamflow prediction using deep learning neural network: case study of Yangtze River[J]. IEEE access, 2020, 8: 90069–90086.
[12] TAO Xiong, BAO Yukun, HU Zhongyi. Does restraining end effect matter in EMD-based modeling framework for time series prediction? Some experimental evidences[J]. Neurocomputing, 2014, 123: 174–184.
[13] 舒忠平, 杨智春. 抑制经验模分解边缘效应的极值点对称延拓法[J]. 西北工业大学学报, 2006, 24(5): 639–643
SHU Zhongping, YANG Zhichun. A better method for effectively suppressing end effect of empirical mode decomposition (EMD)[J]. Journal of Northwestern Polytechnical University, 2006, 24(5): 639–643
[14] WU Fangji, QU Liangsheng. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery[J]. Journal of sound and vibration, 2008, 314(3/4/5): 586–602.
[15] JIN Xuebo, YANG Nianxiang, WANG Xiaoyi, et al. Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model[J]. Sensors, 2020, 20(5): 1334.
[16] GAO Wei, WAI R J. A novel fault identification method for photovoltaic array via convolutional neural network and residual gated recurrent unit[J]. IEEE access, 2020, 8: 159493–159510.
[17] RADOJI?I? D, KREDATUS S. The impact of stock market price Fourier transform analysis on the Gated Recurrent Unit classifier model[J]. Expert systems with applications, 2020, 159: 113565.
[18] XIAO Yi, LI Keying, HU Yi, et al. Combining STRIPAT model and gated recurrent unit for forecasting nature gas consumption of China[J]. Mitigation and adaptation strategies for global change, 2020, 25(7): 1325–1343.
[19] XIE Ruimin, HAO Kuangrong, HUANG Biao, et al. Data-driven modeling based on two-stream λ gated recurrent unit network with soft sensor application[J]. IEEE transactions on industrial electronics, 2020, 67(8): 7034–7043.
[20] YAN Ruiqing, LIU Wei, ZHU Meng, et al. Real-time abnormal light curve detection based on a gated recurrent unit network[J]. Research in astronomy and astrophysics, 2020, 20(1): 7.
[21] DEVI A S, MARAGATHAM G, BOOPATHI K, et al. Hourly day-ahead wind power forecasting with the EEMD-CSO-LSTM-EFG deep learning technique[J]. Soft computing, 2020, 24(16): 12391–12411.
[22] HASAN N. A methodological approach for predicting COVID-19 epidemic using EEMD-ANN hybrid model[J]. Internet of things, 2020, 11: 100228.
[23] LIU Guancong, XIAO Xia, SONG Hang, et al. Precise detection of early breast tumor using a novel EEMD-based feature extraction approach by UWB microwave[J]. Medical and biological engineering and computing, 2021, 59(3): 721–731.
[24] LIU Wei, LI Peiyao, WANG Keyu, et al. Coal-gangue interface detection based on ensemble empirical mode decomposition energy entropy[J]. IEEE access, 2021, 9: 54639–54648.
[25] HABEN S, ARORA S, GIASEMIDIS G, et al. Review of low voltage load forecasting: methods, applications, and recommendations[J]. Applied energy, 2021, 304: 117798.
[26] VALERO M, LI Fangyu, ZHAO Liang, et al. Vibration sensing-based human and infrastructure safety/health monitoring: a survey[J]. Digital signal processing, 2021, 114: 103037.
[27] DUAN W Y, HAN Y, HUANG L M, et al. A hybrid EMD-SVR model for the short-term prediction of significant wave height[J]. Ocean engineering, 2016, 124: 54–73.
[28] GAO Shuai, HUANG Yuefei, ZHANG Shuo, et al. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation[J]. Journal of hydrology, 2020, 589: 125188.

备注/Memo

收稿日期:2021-05-06。
基金项目:河南省水利科技攻关项目(GG202042).
作者简介:刘扬,副教授,主要研究方向为智慧水利、机器学习、数据分析。参与水利重大科技、南水北调工程安全等项目20余项。发表学术论文30余篇;王立虎,硕士研究生,主要研究方向为水利大数据、智能云计算、机器学习和深度学习。发表学术论文6篇;杨礼波,副教授,主要研究方向为机器学习、模式识别、数据挖掘和信息管理。发表学术论文10余篇
通讯作者:刘扬.E-mail:ly_research@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com