[1]张欣培,周尧,章毅.用于胎儿超声切面识别的知识蒸馏方法[J].智能系统学报,2022,17(1):181-191.[doi:10.11992/tis.202105007]
ZHANG Xinpei,ZHOU Yao,ZHANG Yi.Knowledge distillation method for fetal ultrasound section identification[J].CAAI Transactions on Intelligent Systems,2022,17(1):181-191.[doi:10.11992/tis.202105007]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第1期
页码:
181-191
栏目:
人工智能院长论坛
出版日期:
2022-01-05
- Title:
-
Knowledge distillation method for fetal ultrasound section identification
- 作者:
-
张欣培, 周尧, 章毅
-
四川大学 计算机学院, 四川 成都 610065
- Author(s):
-
ZHANG Xinpei, ZHOU Yao, ZHANG Yi
-
College of Computer Science, Sichuan University, Chengdu 610065, China
-
- 关键词:
-
深度学习; 卷积神经网络; 残差网络; 产前检查; 胎儿超声; 计算机辅诊; 知识蒸馏; 模型压缩
- Keywords:
-
deep learning; convolutional neural network; residual network; prenatal diagnosis; fetal ultrasound; computer aided diagnosis; knowledge distillation; model compression
- 分类号:
-
TP30
- DOI:
-
10.11992/tis.202105007
- 摘要:
-
胎儿超声切面识别是产前超声检查的主要任务之一,直接影响了产前超声检查的质量。近年来,深度神经网络方法在临床超声辅助诊断方面取得了许多进展。然而,已有研究大多应用预训练模型微调进行迁移学习,这不仅容易导致参数冗余和过拟合问题,而且限制了在实际应用中的实时分析能力。本文提出用于胎儿超声切面识别的知识蒸馏方法。第1阶段,在学生教师网络模型中采用残差网络,对二者隐藏层特征融入注意力机制,提取隐藏层关键信息,进行一次知识迁移,使学生网络获得先验权重;第2阶段,使用教师网络模型指导学生网络模型进行知识蒸馏训练,进一步从整体上提升知识迁移的性能。实验结果表明:学生网络在提升各项性能的同时,降低了模型复杂度,有利于超声设备终端的部署和实时分析能力的提升。
- Abstract:
-
Fetal ultrasound section recognition is one of the main tasks of prenatal ultrasonography, which directly affects the quality of prenatal ultrasonography. In recent years, by the Deep Neural Network method, we have made great advances in clinical ultrasound-assisted diagnosis. However, most of the existing studies have applied fine-tuned pre-trained model for migration learning, which not only easily leads to parameter redundancy and overfitting problems, but also limits the real-time analysis capability in practical applications. Therefore, this paper proposes a knowledge distillation method for fetal ultrasound section recognition. In the first stage, a residual network is used in the student and teacher network model to incorporate attention mechanisms for both hidden layer features, extract key information in the hidden layer, and perform one knowledge migration so that the student network can obtain a priori weight. In the second stage, the teacher network model is used to guide the student network model to perform knowledge distillation training, so as to further improve the performance of knowledge migration in an overall manner. The experimental results show that the student network reduces the model complexity while improving various performances, which is beneficial to the deployment of ultrasound device terminals and real-time analysis capability.
备注/Memo
收稿日期:2021-05-11。
基金项目:国家自然科学基金项目(62006163).
作者简介:张欣培,硕士研究生,主要研究方向为神经网络、医学图像处理;周尧,助理研究员,主要研究方向为神经网络、进化计算。参与科技部科技创新2030–“新一代人工智能”重大项目1项,主持国家自然科学基金项目1项。发表学术论文7篇。;章毅,教授,博士生导师,IEEE Fellow,主要研究方向为人工智能与智能医学。获国家自然科学二等奖、教育部自然科学一等奖、四川省科技进步一等奖。主持科技部科技创新2030–“新一代人工智能”重大项目。发表学术论文500余篇,出版英文学术 专著 3 部。
通讯作者:章毅. E-mail: zhangyi@scu.edu.cn
更新日期/Last Update:
1900-01-01