[1]张欣培,周尧,章毅.用于胎儿超声切面识别的知识蒸馏方法[J].智能系统学报,2022,17(1):181-191.[doi:10.11992/tis.202105007]
 ZHANG Xinpei,ZHOU Yao,ZHANG Yi.Knowledge distillation method for fetal ultrasound section identification[J].CAAI Transactions on Intelligent Systems,2022,17(1):181-191.[doi:10.11992/tis.202105007]
点击复制

用于胎儿超声切面识别的知识蒸馏方法

参考文献/References:
[1] MARACI M A, NAPOLITANO R, PAPAGEORGHIOU A, et al. Searching for structures of interest in an ultrasound video sequence[C]//Proceedings of the 5th International Workshop on Machine Learning in Medical Imaging. Boston, USA, 2014: 133–140.
[2] PLATT J. Sequential minimal optimization: a fast algorithm for training support vector machines[J]. Advances in kernel methods-support vector learning, 1998, 7:1–22.
[3] BAUMGARTNER C F, KAMNITSAS K, MATTHEW J, et al. SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound[J]. IEEE transactions on medical imaging, 2017, 36(11): 2204–2215.
[4] MARACI M A, BRIDGE C P, NAPOLITANO R, et al. A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat[J]. Medical image analysis, 2017, 37: 22–36.
[5] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. San Francisco, USA, 2001: 282–289.
[6] RYOU H, YAQUB M, CAVALLARO A, et al. Automated 3D ultrasound biometry planes extraction for first trimester fetal assessment[C]//Proceedings of the 7th International Workshop on Machine Learning in Medical Imaging. Athens, Greece, 2016: 196–204.
[7] CHENG P M, MALHI M S. Transfer learning with convolutional neural networks for classification of abdominal ultrasound images[J]. Journal of digital imaging, 2017, 30(2): 234–243.
[8] DONAHUE J. CaffeNet(GitHubPage)[EB/OL]. (2016-05-6)[2021-05-11].https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
[9] SIMONYAN K. VGG team ILSVRC-2014 model with 16 weight layers (GitHub Page)[EB/OL]. (2016-05-16)[2021-05-11]. https://gist.github.com/ksimonyan/211839e770f7b538e2d8
[10] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2021-05-11]. https://arxiv.org/abs/1704.04861v1.
[11] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 4510–4520.
[12] ANDREW A, SANDLER M, GRACE C, et al. Searching for mobileNetV3[EB/OL]. (2019-05-06)[2021-05-11].https://arxiv.org/abs/1905.02244v3.
[13] BUCILUǎ C, CARUANA R, NICULESCU-MIZIL A. Model compression[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA, 2006: 535–541.
[14] ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[J]. (2014-12-19)[2021-05-11]. https://arxiv.org/abs/1412.6550v2.
[15] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09)[2021-05-11].https://arxiv.org/abs/1503.02531.
[16] JIN Xiao, PENG Baoyun, WU Yichao, et al. Knowledge distillation via route constrained optimization[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision . Seoul, Korea , 2019: 1345–1354.
[17] PHUONG M H, LAMPERT C H. Towards understanding knowledge distillation[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA, 2019.
[18] JI Guangda, ZHU Zhanxing. Knowledge distillation in wide neural networks: risk bound, data efficiency and imperfect teacher[EB/OL]. (2020-10-20)[2021-05-11].https://arxiv.org/abs/2010.10090.
[19] ZHANG Ying, XIANG Tao, HOSPEDALES T M, et al. Deep mutual learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 4320–4328.
[20] MOBAHI H, FARAJTABAR M, BARTLETT P L. Self-distillation amplifies regularization in Hilbert space[EB/OL]. (2020-02-13)[2021-05-11].https://arxiv.org/abs/2002.05715v1.
[21] ZHAI Mengyao, CHEN Lei, TUNG F, et al. Lifelong GAN: continual learning for conditional image generation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision . Seoul, South Korea, 2019: 2759–2768.
[22] YUAN Li, TAY F E H , LI Guilin, et al. Revisit knowledge distillation: a teacher-free framework[C]//Proceedings of the International Conference on Learning Representation. Addis Ababa, Ethiopia, 2020.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[4]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[5]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[6]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[7]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[8]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[9]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[10]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[11]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[12]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[13]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[14]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[15]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[16]汪鸿翔,柳培忠,骆炎民,等.高斯核函数卷积神经网络跟踪算法[J].智能系统学报,2018,13(3):388.[doi:10.11992/tis.201612040]
 WANG Hongxiang,LIU Peizhong,LUO Yanmin,et al.Convolutional neutral network tracking algorithm accelerated by Gaussian kernel function[J].CAAI Transactions on Intelligent Systems,2018,13():388.[doi:10.11992/tis.201612040]
[17]冯小荣,惠康华,柳振东.基于卷积特征和贝叶斯分类器的人脸识别[J].智能系统学报,2018,13(5):769.[doi:10.11992/tis.201706052]
 FENG Xiaorong,HUI Kanghua,LIU Zhendong.Face recognition based on convolution feature and Bayes classifier[J].CAAI Transactions on Intelligent Systems,2018,13():769.[doi:10.11992/tis.201706052]
[18]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[19]胡越,罗东阳,花奎,等.关于深度学习的综述与讨论[J].智能系统学报,2019,14(1):1.[doi:10.11992/tis.201808019]
 HU Yue,LUO Dongyang,HUA Kui,et al.Overview on deep learning[J].CAAI Transactions on Intelligent Systems,2019,14():1.[doi:10.11992/tis.201808019]
[20]孙必慎,石武祯,姜峰.计算视觉核心问题:自然图像先验建模研究综述[J].智能系统学报,2019,14(1):71.[doi:10.11992/tis.201804019]
 SUN Bishen,SHI Wuzhen,JIANG Feng.Core problem in computer vision: survey of natural image prior models[J].CAAI Transactions on Intelligent Systems,2019,14():71.[doi:10.11992/tis.201804019]

备注/Memo

收稿日期:2021-05-11。
基金项目:国家自然科学基金项目(62006163).
作者简介:张欣培,硕士研究生,主要研究方向为神经网络、医学图像处理;周尧,助理研究员,主要研究方向为神经网络、进化计算。参与科技部科技创新2030–“新一代人工智能”重大项目1项,主持国家自然科学基金项目1项。发表学术论文7篇。;章毅,教授,博士生导师,IEEE Fellow,主要研究方向为人工智能与智能医学。获国家自然科学二等奖、教育部自然科学一等奖、四川省科技进步一等奖。主持科技部科技创新2030–“新一代人工智能”重大项目。发表学术论文500余篇,出版英文学术 专著 3 部。
通讯作者:章毅. E-mail: zhangyi@scu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com