[1]张兴,陈昊.差分隐私的高维数据发布研究综述[J].智能系统学报,2021,16(6):989-998.[doi:10.11992/tis.202104023]
ZHANG Xing,CHEN Hao.A research review of high-dimensional data publishing based on a differential privacy model[J].CAAI Transactions on Intelligent Systems,2021,16(6):989-998.[doi:10.11992/tis.202104023]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第6期
页码:
989-998
栏目:
综述
出版日期:
2021-11-05
- Title:
-
A research review of high-dimensional data publishing based on a differential privacy model
- 作者:
-
张兴, 陈昊
-
辽宁工业大学 电子与信息工程学院,辽宁 锦州 121001
- Author(s):
-
ZHANG Xing, CHEN Hao
-
School of Electronics & Information Engineering, Liaoning University of Technology, Jinzhou 121001, China
-
- 关键词:
-
大数据发布; 隐私保护; 数据挖掘; 高维数据; 特征降维; 贝叶斯网络; 粗糙集; 随机投影; 差分隐私
- Keywords:
-
big data publishing; privacy protection; data mining; feature dimension reduction; bayesian network; rough set; random projection; high dimensional data; differential privacy
- 分类号:
-
TP309.2
- DOI:
-
10.11992/tis.202104023
- 摘要:
-
大数据时代的到来,使得信息量暴增的同时,数据维度也呈现几何式增长。在保护用户隐私的前提下,如何充分挖掘高维数据的可用信息,成为了大数据发布领域的研究热点和难点。差分隐私作为一种强大的隐私保护模型,被越来越多地应用到高维数据发布中。本文归纳了差分隐私及其相关方法在高维数据发布的应用,重点分析了差分隐私和特征降维、特征抽取、贝叶斯网络、树模型以及最新提出的粗糙集和随机投影等方法在高维数据发布中结合应用的优缺点,梳理了各个方法在高维数据方面的应用和对比,最后对未来差分隐私在高维数据发布中的应用方向进行了展望。
- Abstract:
-
With the advent of the era of big data, the amount of digitally-generated information has increased dramatically, and the data dimension has also shown geometric growth. How to fully mine high-dimensional data while maintaining the user’s privacy has become a focus and a difficult research topic in the field of big data publishing. As a powerful privacy protection model, differential privacy is increasingly in use in high-dimensional data publishing. This paper summarizes the application of differential privacy and its related methods in high-dimensional data publishing, focusing on an analysis of the advantages and disadvantages of differential privacy and feature dimension reduction, feature extraction, the Bayesian network, tree model, and the latest rough set and random projection methods in high-dimensional data publishing. Moreover, we survey the application and comparison of each method in high-dimensional data and finally discuss the future application of differential privacy in high-dimensional data publishing.
更新日期/Last Update:
2021-12-25