[1]包政凯,朱齐丹,刘永超.满秩分解最小二乘法船舶航向模型辨识[J].智能系统学报,2022,17(1):137-143.[doi:10.11992/tis.202104020]
 BAO Zhengkai,ZHU Qidan,LIU Yongchao.Ship heading model identification based on full rank decomposition least square method[J].CAAI Transactions on Intelligent Systems,2022,17(1):137-143.[doi:10.11992/tis.202104020]
点击复制

满秩分解最小二乘法船舶航向模型辨识

参考文献/References:
[1] 张笛, 赵银祥, 崔一帆, 等. 智能船舶的研究现状可视化分析与发展趋势[J]. 交通信息与安全, 2021, 1(29): 7–16
ZHANG Di, Zhao Yinxiang, CUI Yifan, et al. A Visualization Analysis and Development Trend of Intelligent Ship Studies[J]. Journal of transport information and safety, 2021, 1(29): 7–16.
[2] 封波. 智能船舶发展战略规划研究[J]. 船舶工程, 2020, 42(3): 1–8
FENG Bo. Research on intelligent ship development strategic planning[J]. Ship engineering, 2020, 42(3): 1–8
[3] 严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述[J]. 船舶工程, 2020, 42(3): 15–20
YAN Xinping, LIU Jialun, FAN Ailong, et al. The development and tendency of intelligent vessel techniques[J]. Ship engineering, 2020, 42(3): 15–20
[4] 徐海祥, 朱梦飞, 余文曌, 等. 面向智能船舶的自动靠泊鲁棒自适应控制[J]. 华中科技大学学报(自然科学版), 2020, 48(3): 25–40
XU Haixiang, ZHU Mengfei, YU Wenzhao, et al. Robust adaptive control for automatic berthing of intelligent ships[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2020, 48(3): 25–40
[5] PAN Wei, XIE Xinlian, HE Ping, et al. An automatic route design algorithm for intelligent ships based on a novel environment modeling method[J]. Ocean engineering, 2021, 237:109603.
[6] 秦贝贝, 陈增强, 孙明玮, 等. 基于自适应神经模糊推理系统的船舶航向自抗扰控制[J]. 智能系统学报, 2020, 15(2): 255–263
QIN Beiei, CHEN Zengqiang, SUN Mingwei, et al. Active disturbance rejection control of ship course based on adaptive-network-based fuzzy inference system[J]. CAAI transactions on intelligent systems, 2020, 15(2): 255–263
[7] 杨迪, 郭晨, 朱玉华, 等. 欠驱动船舶神经网络自适应路径跟踪控制[J]. 智能系统学报, 2018, 13(2): 254?260
YANG Di, GUO Chen, ZHU Yuhua, et al. Neural network adaptive path tracking control for underactuated ships[J]. CAAI transactions on intelligent systems, 2018, 13(2): 254?260.
[8] LIU Zhixiang, ZHANG Youmin, YU Xiang, et al. Unmanned surface vehicles: an overview of developments and challenges[J]. Annual reviews in control, 2016, 41: 71–93.
[9] FENG Ding, LIU P X, LIU Guangjun. Multi-innovation least-squares identification for system modeling[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2010, 40(3): 767–778.
[10] 孙明轩, 毕宏博. 学习辨识: 最小二乘算法及其重复一致性[J]. 自动化学报, 2012, 38(5): 698–706
SUN Mingxuan, BI Hongbo. Learning identification: least squares algorithms and their repetitive consistency[J]. Acta automatica sinica, 2012, 38(5): 698–706
[11] 秦余钢, 马勇, 张亮, 等. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897–903
QIN Yugang, MA Yong, ZHANG Liang, et al. Parameter identification of ship’s maneuvering motion based on improved least square method[J]. Journal of Jilin University(engineering and technology edition), 2016, 46(3): 897–903
[12] SONG Chunyu, ZHANG Xianku, ZHANG Guoqing. Nonlinear identification for 4 DOF ship maneuvering modeling via full-scale trial data [J]. IEEE transactions on industrial electronics, 2021, 99:1.
[13] 孙功武, 谢基榕, 王俊轩. 基于动态遗忘因子递推最小二乘算法的船舶航向模型辨识[J]. 计算机应用, 2018, 38(3): 900–904
SUN Gongwu, XIE Jirong, WANG Junxuan. Ship course identification model based on recursive least squares algorithm with dynamic forgetting factor[J]. Journal of computer applications, 2018, 38(3): 900–904
[14] ZHAO Baigang, ZHANG Xianku. An improved nonlinear innovation-based parameter identification algorithm for ship models[J]. The journal of navigation, 2021, 74(3): 549–557.
[15] 史颂辉, 丁世飞. 基于能量的结构化最小二乘孪生支持向量机[J]. 智能系统学报, 2020, 13(5): 1013–1019
SHI Songhui, DING Shifei. Energy-based structural least square twin support vector machine[J]. CAAI transactions on intelligent systems, 2020, 13(5): 1013–1019
[16] CHEN Sugen, WU Xiaojun. Multiple birth least squares support vector machine for multi-class classification[J]. International journal of machine learning and cybernetics, 2017, 8(6): 1731–1742.
[17] LAURAIN V, TOTH R, PIGA D, et al. An instrumental least squares support vector machine for nonlinear system identification[J]. Automatica, 2015, 54: 340–347.
[18] WANG Zihao, ZOU Zaojian, SOARES C G. Identification of ship manoeuvring motion based on nu-support vector machine[J]. Ocean engineering, 2019, 183: 270–281.
[19] 谢朔, 初秀明, 柳晨光, 等. 基于改进 LSSVM 的船舶操纵运动模型在线参数辨识方法[J]. 中国造船, 2018, 59(2): 178–188
XIE Su, CHU Xiuming, LIU Chenguang, et al. Online parameter identification method for ship maneuvering models based on improved LSSVM[J]. Ship building of China, 2018, 59(2): 178–188
[20] ZHU Man, SUN Wuqiang, HAHN AXEL, et al. Adaptive modeling of maritime autonomous surface ships with uncertainty using a weighted LS-SVR robust to outliers[J]. Ocean engineering, 2020, 200:107053.
[21] LUO Weilin, MOREIRA L, SOARES C G. Manoeuvring simulation of catamaran by using implicit models based on support vector machines[J]. Ocean engineering, 2014, 82: 150–159.
[22] LUO Weilin, MOREIRA L , SOARES C G . Modeling of ship maneuvering motion using neural networks[J]. Journal of marine science and application, 2016, 15(4): 426–432.
[23] RAJESH G, BHATTACHARYYA S K. System identification for nonlinear maneuvering of large tankers using artificial neural network[J]. Applied ocean research, 2008, 30(4): 256–263.
[24] WANG Ning, MENG JOO Er , HAN Min. Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks[J]. IEEE transactions on cybernetics, 2015, 45(12): 2732–2743.
[25] 褚式新, 茅云生, 董早鹏, 等. 基于极大似然法的高速无人艇操纵响应模型参数辨识[J]. 兵工学报, 2020, 41(1): 127–134
CHU Shixin, MAO Yunsheng, DONG Zaopeng, et al. Parameter identification of high-speed USV maneuvering response model based on maximum likelihood algorithm[J]. Acta armamentar II, 2020, 41(1): 127–134
[26] 张炜灵, 蔡烽, 王骁. 基于解析模型的小样本操纵性KT指数辨识方法[J]. 中国航海, 2020, 43(3): 62–67
ZHANG Weiling, CAI Feng, WANG Xiao. Analytical model for maneuverability KT index identification with small sample[J]. Navigation of China, 2020, 43(3): 62–67
[27] 徐健平. 船舶自适应舵的一种算法研究[D]. 大连: 大连海事大学, 2012.XU Jianping. The research of a algorithm of ship adaptive autopilot [D]. Dalian: Dalian Maritime University, 2012.

备注/Memo

收稿日期:2021-04-11。
基金项目:绿色智能内河船舶创新专项 (MC-202002-C01);国家自然科学基金项目 (52171299).
作者简介:包政凯,博士研究生,主要研究方向为船舶模型辨识和船舶运动控制;朱齐丹,教授,博士生导师,主要研究方向为智能机器人技术及应用、智能控制系统设计、图像处理与模式识别。现任黑龙江省自动化学会常务理事。主持国家自然科学基金项目、国防973项目、工信部高技术船舶专项项目、科工局国防基础研究重点项目、科技部国际合作项目、海军预研、科研、型号项目等多项。获国家科技进步二等奖1项、国防科技进步一等奖3项、军队科技进步一等奖1项、黑龙江省科技进步二等奖3项,授权发明专利20项、软件著作权5项。发表学术论文200余篇,出版专著4部;刘永超,博士研究生,主要研究方向为非线性自适应控制和船舶运动控制。
通讯作者:朱齐丹. E-mail:zhuqidan@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com