[1]孙玉波,李海涛,舒智林,等.基于外侧腓肠肌sEMG的帕金森神经调控步态量化测评方法[J].智能系统学报,2022,17(1):98-106.[doi:10.11992/tis.202103045]
SUN Yubo,LI Haitao,SHU Zhilin,et al.A quantitative gait assessment method based on lateral gastrocnemius sEMG for neuromodulation of Parkinson’s disease[J].CAAI Transactions on Intelligent Systems,2022,17(1):98-106.[doi:10.11992/tis.202103045]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第1期
页码:
98-106
栏目:
学术论文—智能系统
出版日期:
2022-01-05
- Title:
-
A quantitative gait assessment method based on lateral gastrocnemius sEMG for neuromodulation of Parkinson’s disease
- 作者:
-
孙玉波1,2, 李海涛3, 舒智林1,2, 于洋4, 韩建达1,2, 梁思泉3, 于宁波1,2
-
1. 南开大学 人工智能学院, 天津 300350;
2. 南开大学 天津市智能机器人技术重点实验室, 天津 300350;
3. 天津市环湖医院 神经外科, 天津 300350;
4. 天津市环湖医院 康复医学科, 天津 300350
- Author(s):
-
SUN Yubo1,2, LI Haitao3, SHU Zhilin1,2, YU Yang4, HAN Jianda1,2, LIANG Siquan3, YU Ningbo1,2
-
1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2. Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China;
3. Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China;
4. Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China
-
- 关键词:
-
脑深部电刺激; 帕金森病; 量化测评; 步态变异性; 表面肌电信号; 神经激活度; 肌肉激活度; 足底压力
- Keywords:
-
deep brain stimulation; Parkinson’s disease; quantitative assessment; gait variability; sEMG; neural activation; muscle activation; plantar-pressure
- 分类号:
-
TP249;TP274
- DOI:
-
10.11992/tis.202103045
- 摘要:
-
帕金森(Parkinson’s disease, PD)患者脑深部电刺激(deep brain stimulation, DBS)神经调控治疗迫切需要客观、量化的测评手段和分析方法。针对这一临床需求,本文提出一种基于外侧腓肠肌(lateral gastrocnemius, LG)表面肌电(surface electromyogram, sEMG)信号的步态量化测评方法。采用平滑先验算法去除肌电信号中的低频趋势并保留帕金森临床症状相关信息,通过小波变换检测足跟击地时刻,识别步态周期并对肌电信号进行划分,进而计算神经激活度、肌肉激活度及其变异性指标。设计一个肌电和足底压力数据无线同步采集的步态量化测评系统,取得伦理许可,针对接受DBS治疗的PD患者开展临床研究。结果表明,本文方法和系统具有良好的临床应用可行性,所提指标与传统步态周期时间变异性指标具有较高的一致性、从而验证了其有效性,且所提指标具有更高的区分度。
- Abstract:
-
Deep brain stimulation (DBS) is proven to be an effective neuromodulation treatment method for Parkinson’s disease (PD), and there is an urgent need for objective and quantitative assessment during neuromodulation treatment. In this work, a gait assessment method based on lateral gastrocnemius (LG) surface electromyogram (sEMG) signals is designed. The low-frequency trend in sEMG signals is removed by a smooth a priori algorithm, while important information related to PD motion abnormality is retained. The wavelet transform analysis is performed to detect heel strike and recognize gait cycle, and the sEMG data can be accordingly segmented. Then, the variability indices on neural activation and muscle activation are extracted. A gait quantitative assessment system is established, using wireless wearable equipments to synchronously acquire the sEMG and plantar pressure data. Ethical approval is granted and clinical study is conducted on PD patients treated with DBS. The proposed indices have high consistency with the traditional gait cycle time variability index, verifying effectiveness of the proposed method. What’s more, the proposed sEMG variability indices show higher discrimination capability.
备注/Memo
收稿日期:2021-03-30。
基金项目:国家自然科学基金项目(U1913208, 61873135).
作者简介:孙玉波,博士研究生,主要研究方向为医疗人工智能、步态分析;李海涛,主治医师,博士,主要研究方向为帕金森、意识障碍、癫痫等疾病的神经调控治疗。;梁思泉,主任医师,博士,中华医学会神经外科分会功能神经外科学组委员、中国康复医学会颅脑创伤康复专业委员会意识障碍学组常委、中国神经调控联盟理事。主要研究方向为帕金森病、正常颅压脑积水、昏迷促醒等精神外科以及颅内功能区脑肿瘤的 外科治疗与DBS手术治疗。
通讯作者:梁思泉. E-mail:liangsiquan@163.com
更新日期/Last Update:
1900-01-01