[1]赵文超,郭鹏,王海波,等.改进樽海鞘群算法求解柔性作业车间调度问题[J].智能系统学报,2022,17(2):376-386.[doi:10.11992/tis.202103036]
 ZHAO Wenchao,GUO Peng,WANG Haibo,et al.Improved slap swarm algorithm for scheduling of flexible job shop[J].CAAI Transactions on Intelligent Systems,2022,17(2):376-386.[doi:10.11992/tis.202103036]
点击复制

改进樽海鞘群算法求解柔性作业车间调度问题

参考文献/References:
[1] 裴小兵, 于秀燕. 改进猫群算法求解置换流水车间调度问题[J]. 智能系统学报, 2019, 14(4): 769–778
PEI Xiaobing, YU Xiuyan. Improved cat swarm optimization for permutation flow shop scheduling problem[J]. CAAI transactions on intelligent systems, 2019, 14(4): 769–778
[2] FATTAHI P, MEHRABAD M S, JOLAI F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems[J]. Journal of intelligent manufacturing, 2007, 18(3): 331–342.
[3] LI Xinyu, GAO Liang. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem[J]. International journal of production economics, 2016, 174: 93–110.
[4] AL AQEL G, LI Xinyu, GAO Liang. A modified iterated greedy algorithm for flexible job shop scheduling problem[J]. Chinese journal of mechanical engineering, 2019, 32(1): 21.
[5] BAGHERI A, ZANDIEH M, MAHDAVI I, et al. An artificial immune algorithm for the flexible job-shop scheduling problem[J]. Future generation computer systems, 2010, 26(4): 533–541.
[6] 姜天华. 混合灰狼优化算法求解柔性作业车间调度问题[J]. 控制与决策, 2018, 33(3): 503–508
JIANG Tianhua. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J]. Control and decision, 2018, 33(3): 503–508
[7] ZIAEE M. A heuristic algorithm for solving flexible job shop scheduling problem[J]. The international journal of advanced manufacturing technology, 2014, 71(1): 519–528.
[8] SHEN Liji, DAUZèRE-PéRèS S, NEUFELD J S. Solving the flexible job shop scheduling problem with sequence-dependent setup times[J]. European journal of operational research, 2018, 265(2): 503–516.
[9] 杨冬婧, 雷德明. 新型蛙跳算法求解总能耗约束FJSP[J]. 中国机械工程, 2018, 29(22): 2682–2689
YANG Dongjing, LEI Deming. A novel shuffled frog-leaping algorithm for FJSP with total energy consumption constraints[J]. China mechanical engineering, 2018, 29(22): 2682–2689
[10] ZHOU Yong, YANG Jianjun. Automatic design of scheduling policies for dynamic flexible job shop scheduling by multi-objective genetic programming based hyper-heuristic[J]. Procedia CIRP, 2019, 79: 439–444.
[11] BAYKASO?LU A, MADENO?LU F S, HAMZADAYI A. Greedy randomized adaptive search for dynamic flexible job-shop scheduling[J]. Journal of manufacturing systems, 2020, 56: 425–451.
[12] ZHANG Guohui, HU Yifan, SUN Jinghe, et al. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints[J]. Swarm and evolutionary computation, 2020, 54: 100664.
[13] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in engineering software, 2017, 114: 163–191.
[14] 杨博, 钟林恩, 朱德娜, 等. 部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J]. 控制理论与应用, 2019, 36(3): 339–352
YANG Bo, ZHONG Linen, ZHU Dena, et al. Modified salp swarm algorithm based maximum power point tracking of power-voltage system under partial shading condition[J]. Control theory & applications, 2019, 36(3): 339–352
[15] IBRAHIM R A, EWEES A A, OLIVE D, et al. Improved salp swarm algorithm based on particle swarm optimization for feature selection[J]. Journal of ambient intelligence and humanized computing, 2019, 10(8): 3155–3169.
[16] BHANDARI A K, KANDHWAY P, MAURYA S. Salp swarm algorithm-based optimally weighted histogram framework for image enhancement[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 6807–6815.
[17] RACHAPUDI V, DEVI G L. Optimal bag-of-features using random salp swarm algorithm for histopathological image analysis[J]. International journal of intelligent information and database systems, 2020, 13(2/3/4): 339–355.
[18] JIA Heming, LANG Chunbo. Salp swarm algorithm with crossover scheme and Lévy flight for global optimization[J]. Journal of intelligent & fuzzy systems, 2021, 40(5): 9277–9288.
[19] JOUHARI H, LEI Deming, AL-QANESS M A A, et al. Modified Harris hawks optimizer for solving machine scheduling problems[J]. Symmetry, 2020, 12(9): 1460.
[20] EWEES A A, AL-QANESS M A A, ELAZIZ M A. Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times[J]. Applied mathematical modelling, 2021, 94: 285–305.
[21] SUN Zaixing, HU Rong, QIAN Bin, et al. Salp swarm algorithm based on blocks on critical path for reentrant job shop scheduling problems[C]//Proceedings of the 14th International Conference on Intelligent Computing. Wuhan, China, 2018.
[22] KACEM I, HAMMADI S, BORNE P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 2002, 32(1): 1–13.
[23] LIU Zhengchao, GUO Shunsheng, WANG Lei. Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption[J]. Journal of cleaner production, 2019, 211: 765–786.
[24] BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of operations research, 1993, 41(3): 157–183.
相似文献/References:
[1]余紫康,董红斌.具有混合策略的樽海鞘群特征选择算法[J].智能系统学报,2024,19(3):757.[doi:10.11992/tis.202209040]
 YU Zikang,DONG Hongbin.Salp swarm feature selection algorithm with a hybrid strategy[J].CAAI Transactions on Intelligent Systems,2024,19():757.[doi:10.11992/tis.202209040]

备注/Memo

收稿日期:2021-03-25。
基金项目:国家自然科学基金项目(51405403);国家重点研发计划项目(2020YFB1712200)
作者简介:赵文超,硕士研究生,主要研究方向为生产调度、系统仿真;郭鹏,副教授,博士,中国运筹学会会员,ACM会员,中国计算机学会会员,主要研究方向为智能制造与智慧物流。发表学术论文20余篇;王海波,副教授,博士,主要研究方向为智能制造
通讯作者:郭鹏.E-mail:pengguo318@swjtu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com