[1]雷涛,王洁,薛丁华,等.差异特征融合的无监督SAR图像变化检测[J].智能系统学报,2021,16(3):595-604.[doi:10.11992/tis.202103011]
 LEI Tao,WANG Jie,XUE Dinghua,et al.Unsupervised SAR image change detection based on difference feature fusion[J].CAAI Transactions on Intelligent Systems,2021,16(3):595-604.[doi:10.11992/tis.202103011]
点击复制

差异特征融合的无监督SAR图像变化检测

参考文献/References:
[1] LI Lu, WANG Chao, ZHANG Hong, et al. Urban building change detection in SAR images using combined differential image and residual U-Net network[J]. Remote sensing, 2019, 11(9):1091.
[2] KURUOGLU E E, ZERUBIA J. Modeling SAR images with a generalization of the Rayleigh distribution[J]. IEEE transactions on image processing, 2004, 13(4):527-533.
[3] WANG Rongfang, ZHANG Jie, CHEN Jiawei, et al. Imbalanced learning-based automatic SAR images change detection by morphologically supervised PCA-Net[J]. IEEE geoscience and remote sensing letters, 2019, 16(4):554-558.
[4] CHEN Hongruixuan, WU Chen, DU Bo, et al. Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(4):2848-2864.
[5] PIRRONE D, BOVOLO F, BRUZZONE L. A novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(7):4780-4795.
[6] XUE Dinghua, LEI Tao, JIA Xiaohong, et al. Unsupervised change detection using multiscale and multiresolution Gaussian-mixture-model guided by saliency enhancement[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2020, 14:1796-1809.
[7] GONG Maoguo, ZHOU Zhiqiang, MA Jingjing. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J]. IEEE transactions on image processing, 2012, 21(4):2141-2151.
[8] JIA Lu, LI Ming, ZHANG Peng, et al. Remote-sensing image change detection with fusion of multiple wavelet kernels[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(8):3405-3418.
[9] ZHENG Yaoguo, ZHANG Xiangrong, HOU Biao, et al. Using combined difference image and k-means clustering for SAR image change detection[J]. IEEE geoscience and remote sensing letters, 2014, 11(3):691-695.
[10] 邵攀,任东,董婷.顾及冲突分析的模糊积分非监督变化检测[EB/OL].(2019?07?02)[2021?03?05] https://doi.org/10.16383/j.aas.c190047.
SHAO Pan, REN Dong, DONG Ting. Unsupervised change detection based on fuzzy integral considering conflict analysis[EB/OL]. (2019?07?02)[2021?03?05] https://doi.org/10.16383/j.aas.c190047.
[11] GONG Maoguo, SU Linzhi, JIA Meng, et al. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images[J]. IEEE transactions on fuzzy systems, 2014, 22(1):98-109.
[12] LEI Tao, XUE Dinghua, LYU Zhiyong, et al. Unsupervised change detection using fast fuzzy clustering for landslide mapping from very high-resolution images[J]. Remote sensing, 2018, 10(9):1381.
[13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4):834-848.
[14] LEI Tao, ZHANG Yuxiao, LYU Zhiyong, et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J]. IEEE geoscience and remote sensing letters, 2019, 16(6):982-986.
[15] LIU Jia, GONG Maoguo, QIN Kai, et al. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE transactions on neural networks and learning systems, 2018, 29(3):545-559.
[16] ZHAO Wei, WANG Zhirui, GONG Maoguo, et al. Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network[J]. IEEE transactions on geoscience and remote sensing, 2017, 55(12):7066-7080.
[17] GONG Maoguo, ZHAO Jiaojiao, LIU Jia, et al. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE transactions on neural networks and learning systems, 2016, 27(1):125-138.
[18] GAO Feng, DONG Junyu, LI Bo, et al. Automatic change detection in synthetic aperture radar images based on PCANet[J]. IEEE geoscience and remote sensing letters, 2016, 13(12):1792-1796.
[19] DONG Huihui, MA Wenping, WU Yue, et al. Local descriptor learning for change detection in synthetic aperture radar images via convolutional neural networks[J]. IEEE access, 2018, 7:15389-15403.
[20] 王昶, 张永生, 韩世静, 等. 基于频域显著性方法和ELM的遥感影像变化检测[J]. 华中科技大学学报(自然科学版), 2020, 48(5):19-24
WANG Chang, ZHANG Yongsheng, HAN Shijing, et al. Remote sensing image change detection based on frequency domain significance method and ELM[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2020, 48(5):19-24
[21] MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications:a survey[J]. Information fusion, 2019, 45:153-178.
[22] ZHANG Z, VOSSELMAN G, GERKE M, et al. Change detection between multimodal remote sensing data using Siamese CNN[EB/OL]. (2018?07?25)[2021?02?11]https://arxiv.org/pdf/1807.09562.
[23] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2015:4353-4361.
[24] KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE transactions on image processing, 2010, 19(5):1328-1337.
[25] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE transactions on fuzzy systems, 2018, 26(5):3027-3041.
[26] 雷涛, 张肖, 加小红, 等. 基于模糊聚类的图像分割研究进展[J]. 电子学报, 2019, 47(8):1776-1791
LEI Tao, ZHANG Xiao, JIA Xiaohong, et al. Research progress on image segmentation based on fuzzy clustering[J]. Acta electronica sinica, 2019, 47(8):1776-1791

备注/Memo

收稿日期:2021-03-08。
基金项目: 国家自然科学基金项目(61871259,61861024); 陕西省重点研发计划项目(2021ZDLGY08-07);
作者简介:雷涛,教授,博士生导师,陕西科技大学电子信息与人工智能学院副院长,IEEE高级会员,主要研究方向为计算机视觉、机器学习。发表学术论文90余篇;王洁,硕士研究生,主要研究方向为遥感影像分析、深度学习;薛丁华,博士研究生,主要研究方向为遥感影像分析、深度学习
通讯作者:雷涛.E-mail:leitaoly@163.com

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com