[1]雷涛,王洁,薛丁华,等.差异特征融合的无监督SAR图像变化检测[J].智能系统学报,2021,16(3):595-604.[doi:10.11992/tis.202103011]
LEI Tao,WANG Jie,XUE Dinghua,et al.Unsupervised SAR image change detection based on difference feature fusion[J].CAAI Transactions on Intelligent Systems,2021,16(3):595-604.[doi:10.11992/tis.202103011]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第3期
页码:
595-604
栏目:
人工智能院长论坛
出版日期:
2021-05-05
- Title:
-
Unsupervised SAR image change detection based on difference feature fusion
- 作者:
-
雷涛1,2, 王洁3, 薛丁华3, 王兴武2, 杜晓刚2
-
1. 陕西科技大学 电子信息与人工智能学院,陕西 西安 710021;
2. 陕西科技大学 陕西省人工智能联合实验室,陕西 西安 710021;
3. 陕西科技大学 电气与控制工程学院,陕西 西安 710021
- Author(s):
-
LEI Tao1,2, WANG Jie3, XUE Dinghua3, WANG Xingwu2, DU Xiaogang2
-
1. School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China;
2. Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China;
3. School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
-
- 关键词:
-
SAR遥感影像; 变化检测; 无监督学习; 卷积神经网络; 特征融合; 差异图像; 模糊聚类; 孪生网络
- Keywords:
-
SAR remote sensing image; change detection; unsupervised learning; convolution neural network; feature fusion; difference image; fuzzy c-means; Siamese network
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202103011
- 摘要:
-
针对Siamese网络忽略不同层级差异特征之间的关联导致检测精度有限的问题,提出了基于差异特征融合的无监督SAR(synthetic aperture radar)图像变化检测算法。首先,利用对数比值算子和均值比值算子构建两幅信息互补的差异图,通过引入能量矩阵对差异图进行像素级融合以提高其信噪比;其次,设计了一种基于差异特征融合的Siamese网络(difference feature fusion for Siamese,DFF-Siamese),该网络能够通过差异特征提取模块在决策层综合衡量不同层级特征之间的差异程度,从而有效增强网络的特征表达能力;最后,利用模糊聚类算法对融合结果进行分类构建“伪标签”,用于训练DFF-Siamese网络以实现高精度SAR图像变化检测。在3组真实遥感数据集上的实验结果表明,本文提出的算法与其他对比算法相比具有更高的检测精度和更低的错误率。
- Abstract:
-
The Siamese network ignores the correlation between different levels of different features, leading to limited detection accuracy. To overcome this limitation, an unsupervised synthetic aperture radar (SAR) image change detection algorithm based on the fusion of different features is proposed. The method uses log-ratio and mean-ratio operators to construct two complementary difference images and introduces an energy matrix to perform pixel-level fusion on these difference maps to improve its signal-noise ratio. Next, a Siamese network based on different feature fusion (DFF-Siamese) is designed. By introducing a difference feature extraction module, the DFF-Siamese comprehensively measure the differences and similarities between the multitemporal images using high-level semantic features, effectively improving the feature representation capability of the network. Finally, a fuzzy clustering algorithm is used to classify the fusion images to construct fake labels used to train the developed DFF-Siamese network, achieving accurate change detection for the SAR images. Experimental results from three real remote sensing datasets showed that the proposed method exhibits higher change detection accuracy with lower error rates compared with other popular algorithms.
备注/Memo
收稿日期:2021-03-08。
基金项目: 国家自然科学基金项目(61871259,61861024); 陕西省重点研发计划项目(2021ZDLGY08-07);
作者简介:雷涛,教授,博士生导师,陕西科技大学电子信息与人工智能学院副院长,IEEE高级会员,主要研究方向为计算机视觉、机器学习。发表学术论文90余篇;王洁,硕士研究生,主要研究方向为遥感影像分析、深度学习;薛丁华,博士研究生,主要研究方向为遥感影像分析、深度学习
通讯作者:雷涛.E-mail:leitaoly@163.com
更新日期/Last Update:
2021-06-25