[1]余沁茹,卢桂馥,李华.自适应图正则化的低秩非负矩阵分解算法[J].智能系统学报,2022,17(2):325-332.[doi:10.11992/tis.202102007]
YU Qinru,LU Guifu,LI Hua.Nonnegative low-rank matrix factorization with adaptive graph neighbors[J].CAAI Transactions on Intelligent Systems,2022,17(2):325-332.[doi:10.11992/tis.202102007]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
17
期数:
2022年第2期
页码:
325-332
栏目:
学术论文—机器感知与模式识别
出版日期:
2022-03-05
- Title:
-
Nonnegative low-rank matrix factorization with adaptive graph neighbors
- 作者:
-
余沁茹, 卢桂馥, 李华
-
安徽工程大学 计算机与信息学院, 安徽 芜湖 241009
- Author(s):
-
YU Qinru, LU Guifu, LI Hua
-
School of Computer and Information, Anhui Polytechnic University, Wuhu 241009, China
-
- 关键词:
-
聚类; 特征提取; 降维; 流形学习; 非负矩阵分解; 低秩约束; 图正则化; 自适应聚类
- Keywords:
-
cluster; feature extraction; dimensionality reduction; manifold learning; nonnegative matrix factorization; low-rank constrain; graph regularization; adaptive clustering
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202102007
- 摘要:
-
图正则化(nonnegative matrix factorization, NMF)算法(graph regularization nonnegative matrix factorization, GNMF)仍存在一些不足之处:GNMF算法并没有考虑数据的低秩结构;在GNMF算法中,其拉普拉斯图是使用K近邻(K nearest neighbor,KNN)方法预先定义的,而KNN方法无法总是获得最优图解,从而使得GNMF算法的性能不能达到最优。为此,本文提出了一种自适应图正则化的非负矩阵分解算法(nonnegative low-rank matrix factorization with adaptive graph neighbors,NLMFAN)。一方面,通过引入低秩约束,使得NLMFAN可以获得原始数据集的有效低秩结构;另一方面,设计了一种通过自适应求解相似度矩阵的方法来进行图的构建,即图的构造和矩阵分解的结果被融入一个整体的框架中,使得图中节点的相似性是自动从数据中学习得到的。此外,本文还给出了一种求解NLMFAN的有效算法。在多种数据集上的实验验证了本文所提出的算法的有效性。
- Abstract:
-
The exsting graph regularization nonnegative matrix factorization (GNMF) method still has some shortcomings: The GNMF algorithm does not consider the low-rank structure of data. In the GNMF algorithm, the Laplacian graph uses the K-nearest neighbor (KNN) method, and the KNN method cannot always obtain the optimal diagram, which makes the performance of the GNMF algorithm not optimal. For this reason, we propose an algorithm called nonnegative low-rank matrix factorization with adaptive graph neighbors (NLMFAN). On the one hand, by introducing low-rank constraints, NLMFAN can obtain the effective low-rank structure of the original dataset. On the other hand, a method for adaptively solving the similarity matrix is designed to construct the graph. This implies that the structure of the graph and the results of the matrix decomposition are integrated into an integrated framework so that the similarity of the nodes in the graph is automatically learned from the data. In addition, an effective algorithm for solving NLMFAN is given, and experiments on a variety of datasets verify the effectiveness of the algorithm.
备注/Memo
收稿日期:2021-02-07。
基金项目:国家自然科学基金项目(61976005,61772277);安徽省自然科学基金项目(1908085MF183)
作者简介:余沁茹,硕士研究生,主要研究方向为图像处理与计算机视觉;卢桂馥,教授,主要研究方向为计算机图形学及图像处理。发表学术论文49篇;李华,硕士研究生,主要研究方向为图像处理与计算机视觉
通讯作者:卢桂馥.E-mail:luguifu_jsj@163.com
更新日期/Last Update:
1900-01-01