[1]陈伯伦,朱国畅,纪敏,等.代价约束下基于随机游走的负影响力传播抑制方法[J].智能系统学报,2022,17(2):266-275.[doi:10.11992/tis.202101037]
 CHEN Bolun,ZHU Guochang,JI Min,et al.Negative influence propagation suppression method based on a random walk under cost constraint[J].CAAI Transactions on Intelligent Systems,2022,17(2):266-275.[doi:10.11992/tis.202101037]
点击复制

代价约束下基于随机游走的负影响力传播抑制方法

参考文献/References:
[1] HUANG Keke, WANG Sibo, BEVILACQUA G, et al. Revisiting the stop-and-stare algorithms for influence maximization[J]. Proceedings of the VLDB endowment, 2017, 10(9): 913–924.
[2] 吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735–752
WU Xindong, LI Yi, LI Lei. Influence analysis of online social networks[J]. Chinese journal of computers, 2014, 37(4): 735–752
[3] MORONE F, MAKSE H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524(7563): 65–68.
[4] LYU Linyuan, CHEN Duanbing, REN Xiaolong, et al. Vital nodes identification in complex networks[J]. Physics reports, 2016, 650: 1–63.
[5] TIAN Huaiyu, LIU Yonghonh, LI Yidan, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020, 368(6491): 638–642.
[6] CALIò A, INTERDONATO R, PULICE C, et al. Topology-driven diversity for targeted influence maximization with application to user engagement in social networks[J]. IEEE transactions on knowledge and data engineering, 2018, 30(12): 2421–2434.
[7] CHAKRABORTY S, STEIN S, BREDE M, et al. Competitive influence maximisation using voting dynamics[C]//Proceedings of 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Vancouver, Canada, 2019: 978-985.
[8] 刘雅辉, 靳小龙, 沈华伟, 等. 社交媒体中的谣言识别研究综述[J]. 计算机学报, 2018, 41(7): 1536–1558
LIU Yahui, JIN Xiaolong, SHEN Huawei, et al. A survey on rumor identification over social media[J]. Chinese journal of computers, 2018, 41(7): 1536–1558
[9] HE Xinran, SONG Guojie, CHEN Wei, et al. Influence blocking maximization in social networks under the competitive linear threshold model[C]//Proceedings of the 12th SIAM International Conference on Data Mining. Anaheim, USA, 2012: 463-474.
[10] ARAZKHANI N, MEYBODI M R, REZVANIAN A. Influence blocking maximization in social network using centrality measures[C]//Proceedings of the 5th Conference on Knowledge Based Engineering and Innovation. Tehran, Iran, 2019: 492-497.
[11] 谭振华, 时迎成, 石楠翔, 等. 基于引力学的在线社交网络空间谣言传播分析模型[J]. 计算机研究与发展, 2017, 54(11): 2586–2599
TAN Zhenhua, SHI Yingcheng, SHI Nanxiang, et al. Rumor propagation analysis model inspired by gravity theory for online social networks[J]. Journal of computer research and development, 2017, 54(11): 2586–2599
[12] TONG Guangmo, WU Weili, GUO Ling, et al. An efficient randomized algorithm for rumor blocking in online social networks[J]. IEEE transactions on network science and engineering, 2020, 7(2): 845–854.
[13] 刘亚州, 王静, 潘晓中, 等. 节点影响力下无标度网络谣言传播研究[J]. 小型微型计算机系统, 2018, 39(11): 2375–2379
LIU Yazhou, WANG Jing, PAN Xiaozhong, et al. Research on scale-free network rumor spreading under node influence[J]. Journal of Chinese computer systems, 2018, 39(11): 2375–2379
[14] LEE C L, SUNG C E, MA Haoshang, et al. IDR: positive influence maximization and negative influence minimization under competitive linear threshold model[C]//Proceedings of the 20th IEEE International Conference on Mobile Data Management (MDM). Hong Kong, China, 2019: 501-506.
[15] 曹玖新, 董丹, 徐顺, 等. 一种基于k-核的社会网络影响最大化算法[J]. 计算机学报, 2015, 38(2): 238–248
CAO Jiuxin, DONG Dan, XU Shun, et al. A k-core based algorithm for influence maximization in social networks[J]. Chinese journal of computers, 2015, 38(2): 238–248
[16] PENG Sancheng, WU Min, WANG Guojun, et al. Containing smartphone worm propagation with an influence maximization algorithm[J]. Computer networks, 2014, 74: 103–113.
[17] 陈晋音, 张敦杰, 林翔, 等. 基于影响力最大化策略的抑制虚假消息传播的方法[J]. 计算机科学, 2020, 47(S1): 17–23, 33
CHEN Jinyin, ZHANG Dunjie, LIN Xiang, et al. False message propagation suppression based on influence maximization[J]. Computer science, 2020, 47(S1): 17–23, 33
[18] 江成, 刘室辰. 谣言网络多级传播路径下关键引爆点识别模型和算法研究[J]. 情报杂志, 2020, 39(6): 152–158
JIANG Cheng, LIU Shichen. Research on models and algorithms for identifying trigger points of rumor network under multi-level propagation paths[J]. Journal of intelligence, 2020, 39(6): 152–158
[19] ARAZKHANI N, MEYBODI M R, REZVANIAN A. An efficient algorithm for influence blocking maximization based on community detection[C]//Proceedings of the 5th International Conference on Web Research. Tehran, Iran, 2019: 258-263.
[20] LV Jiaguo, YANG Bin, YANG Zhen, et al. A community-based algorithm for influence blocking maximization in social networks[J]. Cluster computing, 2019, 22(3): 5587–5602.
[21] WANG Biao, CHEN Ge, FU Luoyi, et al. DRIMUX: dynamic rumor influence minimization with user experience in social networks[J]. IEEE transactions on knowledge and data engineering, 2017, 29(10): 2168–2181.
[22] ZHU Wenlong, YANG Wu, XUAN Shichang, et al. Location-aware influence blocking maximization in social networks[J]. IEEE access, 2018, 6: 61462–61477.
[23] YIN Hao, BENSON A R, LESKOVEC J, et al. Local higher-order graph clustering[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada, 2017: 555-564.
[24] TRAUD A L, MUCHA P J, PORTER M A. Social structure of Facebook networks[J]. Physica A: statistical mechanics and its applications, 2012, 391(16): 4165–4180.
[25] DüNKER D, KUNEGIS J. Social networking by proxy: analysis of Dogster, Catster and Hamsterster[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, 2015: 361-362.
[26] TRAUD A L, KELSIC E D, MUCHA P J, et al. Comparing community Structure to characteristics in online collegiate social networks[J]. SIAM review, 2011, 53(3): 526–543.
[27] WANG Huijuan, HERNANDEZ J M, VAN MIEGHEM P. Betweenness centrality in a weighted network[J]. Physical review E, 2008, 77(4): 046105.
[28] BOLDI P, SANTINI M, VIGNA S. PageRank: functional dependencies[J]. ACM transactions on information systems, 2009, 27(4): 19.
[29] MITZENMACHER M, UPFAL E. Probability and computing: Randomized algorithms and probabilistic analysis[J]. The bulletin of symbolic logic, 2006, 12(2): 304–307.
相似文献/References:
[1]孔庆超,毛文吉,张育浩.社交网站中用户评论行为预测[J].智能系统学报,2015,10(3):349.[doi:10.3969/j.issn.1673-4785.201403019]
 KONG Qingchao,MAO Wenji,ZHANG Yuhao.User comment behavior prediction in social networking sites[J].CAAI Transactions on Intelligent Systems,2015,10():349.[doi:10.3969/j.issn.1673-4785.201403019]
[2]王景丽,许立波,庞超逸.复杂网络中的在线社交网络演化模型[J].智能系统学报,2015,10(6):949.[doi:10.11992/tis.201507042]
 WANG Jingli,XU Libo,PANG Chaoyi.Evolution model of online social networks based on complex networks[J].CAAI Transactions on Intelligent Systems,2015,10():949.[doi:10.11992/tis.201507042]
[3]石磊,杜军平,周亦鹏,等.在线社交网络挖掘与搜索技术研究[J].智能系统学报,2016,11(6):777.[doi:10.11992/tis.201612007]
 SHI Lei,DU Junping,ZHOU Yipeng,et al.A survey on online social network mining and search[J].CAAI Transactions on Intelligent Systems,2016,11():777.[doi:10.11992/tis.201612007]
[4]花勇,陈伯伦,朱国畅,等.基于渗流模型的影响力最大化算法[J].智能系统学报,2019,14(6):1262.[doi:10.11992/tis.201906039]
 HUA Yong,CHEN Bolun,ZHU Guochang,et al.An influence maximization algorithm based on percolation model[J].CAAI Transactions on Intelligent Systems,2019,14():1262.[doi:10.11992/tis.201906039]
[5]熊尧,李弼程,王子玥.基于两级传播理论的舆论超网络传播分析[J].智能系统学报,2020,15(5):870.[doi:10.11992/tis.201903011]
 XIONG Yao,LI Bicheng,WANG Ziyue.Analysis of public opinions in network communication based on the two-level communication theory[J].CAAI Transactions on Intelligent Systems,2020,15():870.[doi:10.11992/tis.201903011]
[6]常新功,王金珏.基于图卷积集成的网络表示学习[J].智能系统学报,2022,17(3):547.[doi:10.11992/tis.202107048]
 CHANG Xingong,WANG Jinjue.Network representation learning using graph convolution ensemble[J].CAAI Transactions on Intelligent Systems,2022,17():547.[doi:10.11992/tis.202107048]
[7]孟祥福,赖贞祥,崔江燕.集合空间关键字内聚组查询方法[J].智能系统学报,2024,19(3):707.[doi:10.11992/tis.202211013]
 MENG Xiangfu,LAI Zhenxiang,CUI Jiangyan.Cohesive group query approach for collective spatial keywords[J].CAAI Transactions on Intelligent Systems,2024,19():707.[doi:10.11992/tis.202211013]

备注/Memo

收稿日期:2021-01-29。
基金项目:国家自然科学基金项目(61602202);江苏省自然科学基金项目(BK20160428);江苏省高等学校自然科学研究项目(20KJA520008)
作者简介:陈伯伦,副教授,主要研究方向为复杂网络分析和算法优化。主持国家自然科学基金项目、江苏省自然科学基金项目以及企业横向课题多项,曾获江苏省计算机学会科技进步三等奖。发表学术论文50余篇;朱国畅,硕士研究生,主要研究方向为复杂网络分析、深度学习;纪敏,副教授,主要研究方向为复杂网络分析、链接预测、推荐系统
通讯作者:陈伯伦.E-mail:chenbolun@hyit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com