[1]赵小明,唐志伟,张石清.面向听视觉信息的多模态人格识别研究进展[J].智能系统学报,2021,16(2):189-201.[doi:10.11992/tis.202101034]
 ZHAO Xiaoming,TANG Zhiwei,ZHANG Shiqing.Research advance of multimodal personality recognition based on audio and visual cues[J].CAAI Transactions on Intelligent Systems,2021,16(2):189-201.[doi:10.11992/tis.202101034]
点击复制

面向听视觉信息的多模态人格识别研究进展

参考文献/References:
[1] VINCIARELLI A, MOHAMMADI G. A survey of personality computing[J]. IEEE transactions on affective computing, 2014, 5(3):273-291.
[2] COSTA P T, MCCRAE R R. Trait theories of personality[M]//BARONE D F, HERSEN M, VAN HASSELT V B. Advanced Personality. Boston:Springer, 1998:103-121.
[3] JUNIOR J C S J, Gü?LüTüRK Y, PéREZ M, et al. First impressions:a survey on vision-based apparent personality trait analysis[J]. IEEE transactions on affective computing, 2019:1?1.
[4] PONCE-LóPEZ V, CHEN Baiyu, OLIU M, et al. ChaLearn LAP 2016:first round challenge on first impressions-dataset and results[C]//Proceedings of European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:400-418.
[5] ESCALANTE H J, KAYA H, SALAH A A, et al. Explaining first impressions:modeling, recognizing, and explaining apparent personality from videos[J]. IEEE transcations on affective computing, 2020:1?1.
[6] MATTHEWS G, DEARY I J, WHITEMAN M C. Personality traits[M]. 2nd ed. Cambridge:Cambridge University Press, 2003.
[7] MCCRAE R R, JOHN O P. An introduction to the five-factor model and its applications[J]. Journal of personality, 1992, 60(2):175-215.
[8] KARSON S, O’DELL J W. A guide to the clinical use of the 16 PF[M]. Champaign, IL:Institute for Personality & Ability Testing, 1976.
[9] FURNHAM A. The big five versus the big four:the relationship between the Myers-Briggs Type Indicator (MBTI) and NEO-PI five factor model of personality[J]. Personality and individual differences, 1996, 21(2):303-307.
[10] GREENE R L. The MMPI:an interpretive manual[M]. New York:Grune & Stratton Inc, 1980.
[11] EYSENCK H J, EYSENCK S B G, EYSENCK H J, et al. Manual of the eysenck personality questionnaire[J]. Journal of cardiac failure, 1975, 20(5):S67.
[12] BIEL J I, GATICA-PEREZ D. Voices of vlogging[C]//Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. Washington, USA, 2010.
[13] BIEL J I, GATICA-PEREZ D. The youtube lens:crowdsourced personality impressions and audiovisual analysis of vlogs[J]. IEEE transactions on multimedia, 2013, 15(1):41-55.
[14] BIEL J I, GATICA-PEREZ D. Vlogcast yourself:nonverbal behavior and attention in social media[C]//Proceedings of the International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction. Beijing, China, 2010:1-4.
[15] SANCHEZ-CORTES D, ARAN O, MAST M S, et al. A nonverbal behavior approach to identify emergent leaders in small groups[J]. IEEE transactions on multimedia, 2012, 14(3):816-832.
[16] KICKUL J, NEUMAN G. Emergent leadership behaviors:the function of personality and cognitive ability in determining teamwork performance and KSAs[J]. Journal of business and psychology, 2000, 15(1):27-51.
[17] MCKEOWN G, VALSTAR M, COWIE R, et al. The SEMAINE database:annotated multimodal records of emotionally colored conversations between a person and a limited agent[J]. IEEE transactions on affective computing, 2012, 3(1):5-17.
[18] RAMMSTEDT B, JOHN O P. Measuring personality in one minute or less:a 10-item short version of the Big Five Inventory in English and German[J]. Journal of research in personality, 2007, 41(1):203-212.
[19] ESCALANTE H J, GUYON I, ESCALERA S, et al. Design of an explainable machine learning challenge for video interviews[C]//Proceedings of 2017 International Joint Conference on Neural Networks. Anchorage, USA, 2017:3688-3695.
[20] ZHANG Ting, QIN Rizhen, DONG Qiulei, et al. Physiognomy:personality traits prediction by learning[J]. International journal of automation and computing, 2017, 14(4):386-395.
[21] CELIKTUTAN O, SKORDOS E, GUNES H. Multimodal human-human-robot interactions (MHHRI) dataset for studying personality and engagement[J]. IEEE transactions on affective computing, 2019, 10(4):484-497.
[22] OOSTERHOF N N, TODOROV A. The functional basis of face evaluation[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(32):11087-11092.
[23] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[24] WANG Xizhao, ZHAO Yanxia, POURPANAH F. Recent advances in deep learning[J]. International journal of machine learning and cybernetics, 2020, 11(4):747-750.
[25] GAO Jing, LI Peng, CHEN Zhikui, et al. A survey on deep learning for multimodal data fusion[J]. Neural computation, 2020, 32(5):829-864.
[26] CHOI Y, EL-KHAMY M, LEE J. Universal deep neural network compression[J]. IEEE journal of selected topics in signal processing, 2020, 14(4):715-726.
[27] ANGELOV P, SOARES E. Towards explainable deep neural networks (xDNN)[J]. Neural networks, 2020, 130:185-194.
[28] MAIRESSE F, WALKER M A, MEHL M R, et al. Using linguistic cues for the automatic recognition of personality in conversation and text[J]. Journal of artificial intelligence research, 2007, 30(1):457-500.
[29] MEHL M R, GOSLING S D, PENNEBAKER J W. Personality in its natural habitat:manifestations and implicit folk theories of personality in daily life[J]. Journal of personality and social psychology, 2006, 90(5):862-877.
[30] VALENTE F, KIM S, MOTLICEK P. Annotation and recognition of personality traits in spoken conversations from the ami meetings corpus[C]//Proceedings of Interspeech 2012. Portland, USA, 2012.
[31] IVANOV A V, RICCARDI G, SPORKA A J, et al. Recognition of personality traits from human spoken conversations[C]//Proceedings of Interspeech 2011. Florence, Italy, 2011:1549-1552.
[32] AN G, LEVITAN S I, LEVITAN R, et al. Automatically classifying self-rated personality scores from speech[C]//Proceedings of Interspeech 2016. San Francisco, USA, 2016:1412-1416.
[33] CARBONNEAU M A, GRANGER E, ATTABI Y, et al. Feature learning from spectrograms for assessment of personality traits[J]. IEEE transactions on affective computing, 2020, 11(1):25-31.
[34] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[35] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[36] ELMAN J L. Finding structure in time[J]. Cognitive science, 1990, 14(2):179-211.
[37] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[38] HAYAT H, VENTURA C, LAPEDRIZA à. On the use of interpretable CNN for personality trait recognition from audio[C]//Proceedings of CCIA. Mallorca, Spain, 2019:135-144.
[39] SU M H, WU C H, HUANG Kunyi, et al. Personality trait perception from speech signals using multiresolution analysis and convolutional neural networks[C]//Proceedings of 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Kuala Lumpur, Malaysia, 2017:1532-1536.
[40] ZHU Minxian, XIE Xiang, ZHANG Liqiang, et al. Automatic personality perception from speech in mandarin[C]//Proceedings of 201811th International Symposium on Chinese Spoken Language Processing. Taipei, China, 2018:309-313.
[41] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005:886-893.
[42] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on pattern analysis and machine intelligence, 2002, 24(7):971-987.
[43] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2):91-110.
[44] DHALL A, HOEY J. First impressions-predicting user personality from twitter profile images[C]//Proceedings of the 7th International Workshop on Human Behavior Understanding. Amsterdam, The Netherlands, 2016:148-158.
[45] BOSCH A, ZISSERMAN A, MUNOZ X. Representing shape with a spatial pyramid kernel[C]//Proceedings of the 6th ACM International Conference on Image and Video Retrieval. Amsterdam, The Netherlands, 2007:401-408.
[46] OJANSIVU V, HEIKKIL? J. Blur insensitive texture classification using local phase quantization[C]//Proceedings of the 3rd International Conference on Image and Signal Processing. Cherbourg-Octeville, France, 2008:236-243.
[47] GUNTUKU S C, QIU Lin, ROY S, et al. Do others perceive you as you want them to?:modeling personality based on selfies[C]//Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia. Brisbane, Australia, 2015:21-26.
[48] YAN Yan, NIE Jie, HUANG Lei, et al. Exploring relationship between face and trustworthy impression using mid-level facial features[C]//Proceedings of 22nd International Conference on Multimedia Modeling. Miami, USA, 2016:540-549.
[49] 聂婕, 黄磊, 李臻, 等. 基于人物图像视觉特征的人物性格隐私分析[J]. 通信学报, 2016, 37(11):129-136
NIE Jie, HUANG Lei, LI Zhen, et al. Human personality privacy analysis based on visual features[J]. Journal on communications, 2016, 37(11):129-136
[50] TAREAF R B, ALHOSSEINI S A, MEINEL C. Facial-based personality prediction models for estimating individuals private traits[C]//Proceedings of 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Xiamen, China, 2019:1586-1594.
[51] BIEL J I, TEIJEIRO-MOSQUERA L, GATICA-PEREZ D. FaceTube:predicting personality from facial expressions of emotion in online conversational video[C]//Proceedings of the 14th ACM International Conference on Multimodal Interaction. Santa Monica, California, USA, 2012:53-56.
[52] GATICA-PEREZ D, SANCHEZ-CORTES D, DO T M T, et al. Vlogging over time:longitudinal impressions and behavior in youtube[C]//Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia. Cairo, Egypt, 2018:37-46.
[53] TEIJEIRO-MOSQUERA L, BIEL J I, ALBA-CASTRO J L, et al. What your face vlogs about:expressions of emotion and big-five traits impressions in YouTube[J]. IEEE transactions on affective computing, 2015, 6(2):193-205.
[54] VENTURA C, MASIP D, LAPEDRIZA A. Interpreting CNN models for apparent personality trait regression[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA, 2017:55-63.
[55] WEI Xiushen, LUO Jianhao, WU Jianxin, et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE transactions on image processing, 2017, 26(6):2868-2881.
[56] GüRPINAR F, KAYA H, SALAH A A. Combining deep facial and ambient features for first impression estimation[C]//Proceedings of the European conference on computer vision. Amsterdam, The Netherlands, 2016:372-385.
[57] BEYAN C, ZUNINO A, SHAHID M, et al. Personality traits classification using deep visual activity-based nonverbal features of key-dynamic images[J]. IEEE transactions on affective computing, 2019:1?1.
[58] ATREY P K, HOSSAIN M A, EL SADDIK A, et al. Multimodal fusion for multimedia analysis:a survey[J]. Multimedia systems, 2010, 16(6):345-379.
[59] ZENG Zhihong, PANTIC M, ROISMAN G I, et al. A survey of affect recognition methods:audio, visual, and spontaneous expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(1):39-58.
[60] Gü?LüTüRK Y, Gü?Lü U, VAN GERVEN M A, et al. Deep impression:audiovisual deep residual networks for multimodal apparent personality trait recognition[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:349-358.
[61] SUBRAMANIAM A, PATEL V, MISHRA A, et al. Bi-modal first impressions recognition using temporally ordered deep audio and stochastic visual features[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:337-348.
[62] WEI Xiushen, ZHANG Chenlin, ZHANG Hao, et al. Deep bimodal regression of apparent personality traits from short video sequences[J]. IEEE transactions on affective computing, 2018, 9(3):303-315.
[63] Gü?LüTüRK Y, Gü?Lü U, BARó X, et al. Multimodal first impression analysis with deep residual networks[J]. IEEE transactions on affective computing, 2018, 9(3):316-329.
[64] ?ELIKTUTAN O, GUNES H. Automatic prediction of impressions in time and across varying context:personality, attractiveness and likeability[J]. IEEE transactions on affective computing, 2017, 8(1):29-42.
[65] GORBOVA J, LüSI I, LITVIN A, et al. Automated screening of job candidate based on multimodal video processing[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA, 2017:29-35.
[66] GORBOVA J, AVOTS E, LüSI I, et al. Integrating vision and language for first-impression personality analysis[J]. IEEE MultiMedia, 2018, 25(2):24-33.
[67] ZHANG Chenlin, ZHANG Hao, WEI Xiushen, et al. Deep bimodal regression for apparent personality analysis[C]//Proceedings of European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:311-324.
[68] SARKAR C, BHATIA S, AGARWAL A, et al. Feature analysis for computational personality recognition using youtube personality data set[C]//Proceedings of the 2014 ACM Multi Media on Workshop on Computational Personality Recognition. Orlando, USA, 2014:11-14.
[69] GüRPINAR F, KAYA H, SALAH A A. Multimodal fusion of audio, scene, and face features for first impression estimation[C]//Proceedings of 201623rd International Conference on Pattern Recognition. Cancun, Mexico, 2016:43-48.
[70] PRINCIPI R D P, PALMERO C, JUNIOR J C, et al. On the effect of observed subject biases in apparent personality analysis from audio-visual signals[J]. IEEE transactions on affective computing, 2019:1?1.
[71] KAMPMAN O, BAREZI E J, BERTERO D, et al. Investigating audio, visual, and text fusion methods for end-to-end automatic personality prediction[C]//Proceedings of 56th Annual Meeting of the Association for Computational Linguistics. Melbourne,Australia, 2018:606?611.

备注/Memo

收稿日期:2021-01-28。
基金项目:国家自然科学基金项目(61976149);浙江省自然科学基金项目(LZ20F020002)
作者简介:赵小明,教授,主要研究方向为音频和图像处理、机器学习和模式识别;唐志伟,硕士研究生,主要研究方向为人格计算和模式识别;张石清,教授,博士,主要研究方向为情感计算和模式识别。发表学术论文40余篇
通讯作者:赵小明.E-mail:tzxyzxm@163.com

更新日期/Last Update: 2021-04-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com