[1]王凤随,陈金刚,王启胜,等.自适应上下文特征的多尺度目标检测算法[J].智能系统学报,2022,17(2):276-285.[doi:10.11992/tis.202101029]
 WANG Fengsui,CHEN Jingang,WANG Qisheng,et al.Multi-scale target detection algorithm based on adaptive context features[J].CAAI Transactions on Intelligent Systems,2022,17(2):276-285.[doi:10.11992/tis.202101029]
点击复制

自适应上下文特征的多尺度目标检测算法

参考文献/References:
[1] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[3] SINGH B, DAVIS L S. An analysis of scale invariance in object detection-SNIP[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 3578-3587.
[4] SINGH B, NAJIBI M, DAVIS L S. SNIPER: efficient multi-scale training[C]//Proceedings of the 32nd Conference on Neural Information Processing Systems. Montréal, Canada, 2018: 9333-9343.
[5] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 936-944.
[6] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2021-01-01].http://arxiv.org/abs/1804.02767.
[7] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-14)[2021-01-01].http://arxiv.org/abs/1704.04861.
[8] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2): 303–338.
[9] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, 2016.
[10] LI Yanghao, CHEN Yuntao, WANG Naiyan, et al. Scale-aware trident networks for object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019: 6053-6062.
[11] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011–2023.
[12] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020: 11531-11539.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 779-788.
[14] ZHANG Zhi, HE Tong, ZHANG Hang, et al. Bag of freebies for training object detection neural networks[EB/OL]. (2019-04-12)[2021-01-01]. http://arxiv.org/abs/1902.04103.
[15] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21-37.
[16] FU Chengyang, LIU Wei, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. (2017-01-23)[2021-01-01].http://arxiv.org/abs/1701.06659.
[17] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 379-387.
[18] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019: 6022-6031.
[19] ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Single-shot refinement neural network for object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 4203-4212.
[20] LIU Songtao, HUANG Di, WANG Yunhong. Receptive field block net for accurate and fast object detection[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 404-419.
相似文献/References:
[1]田国会,吉艳青,李晓磊.家庭智能空间下基于场景的人的行为理解[J].智能系统学报,2010,5(1):57.
 TIAN Guo-hui,JI Yan-qing,LI Xiao-lei.Human behaviors understanding based on scene knowledge in home intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5():57.
[2]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[3]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[4]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[5]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[6]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11():608.[doi:10.11992/tis.201512014]
[7]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(3):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12():279.[doi:10.11992/tis.201606037]
[8]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[9]郭晓峰,王耀南,周显恩,等.中国象棋机器人棋子定位与识别方法[J].智能系统学报,2018,13(4):517.[doi:10.11992/tis.201709020]
 GUO Xiaofeng,WANG Yaonan,ZHOU Xianen,et al.Chess-piece localization and recognition method for Chinese chess robot[J].CAAI Transactions on Intelligent Systems,2018,13():517.[doi:10.11992/tis.201709020]
[10]安果维,王耀南,周显恩,等.基于显著性检测的双目测距系统[J].智能系统学报,2018,13(6):913.[doi:10.11992/tis.201712005]
 AN Guowei,WANG Yaonan,ZHOU Xianen,et al.Binocular distance measurement system based on saliency detection[J].CAAI Transactions on Intelligent Systems,2018,13():913.[doi:10.11992/tis.201712005]
[11]朱齐丹,李小铜,郑天昊.舰载机位姿实时视觉测量算法研究[J].智能系统学报,2021,16(6):1045.[doi:10.11992/tis.202103014]
 ZHU Qidan,LI Xiaotong,ZHENG Tianhao.Research on real-time vision measurement algorithm of shipborne aircraft pose[J].CAAI Transactions on Intelligent Systems,2021,16():1045.[doi:10.11992/tis.202103014]
[12]张歆羽,杨钟亮,周哲画,等.面向多目标医疗垃圾分类的智能识别分拣系统设计[J].智能系统学报,2024,19(3):584.[doi:10.11992/tis.202204039]
 ZHANG Xinyu,YANG Zhongliang,ZHOU Zhehua,et al.Design of an intelligent identification and sorting system used for classification of multiobjective medical waste[J].CAAI Transactions on Intelligent Systems,2024,19():584.[doi:10.11992/tis.202204039]

备注/Memo

收稿日期:2021-01-19。
基金项目:安徽高校省级自然科学研究重点项目(KJ2019A0162);安徽省自然科学基金项目(2108085MF197,1708085MF154);检测技术与节能装置安徽省重点实验室开放基金项目(DTESD2020B02)
作者简介:王凤随,副教授,主要研究方向为视频通信、计算机视觉。承担国家自然科学基金、安徽省自然科学基金等多项课题研究。发表学术论文40余篇;陈金刚,硕士研究生,主要研究方向为图像目标检测与识别;王启胜,硕士研究生,主要研究方向为图像目标检测与识别
通讯作者:王凤随.E-mail:fswang@ahpu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com