[1]高尚兵,黄子赫,耿璇,等.视觉协同的违规驾驶行为分析方法[J].智能系统学报,2021,16(6):1158-1165.[doi:10.11992/tis.202101024]
GAO Shangbing,HUANG Zihe,GENG Xuan,et al.A visual collaborative analysis method for detecting illegal driving behavior[J].CAAI Transactions on Intelligent Systems,2021,16(6):1158-1165.[doi:10.11992/tis.202101024]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第6期
页码:
1158-1165
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2021-11-05
- Title:
-
A visual collaborative analysis method for detecting illegal driving behavior
- 作者:
-
高尚兵1,2, 黄子赫1, 耿璇1, 臧晨1, 沈晓坤1
-
1. 淮阴工学院 计算机与软件工程学院,江苏 淮安 223001;
2. 淮阴工学院 江苏省物联网移动互联技术工程实验室,江苏 淮安 223001
- Author(s):
-
GAO Shangbing1,2, HUANG Zihe1, GENG Xuan1, ZANG Chen1, Shen Xiaokun1
-
1. College of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian 223001, China;
2. Laboratory for Internet of Things and Mobile Internet Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223001, China
-
- 关键词:
-
驾驶行为识别; 模型剪枝; 目标检测; 姿态估计; 协同检测; 模型优化; 深度学习; 卷积神经网络
- Keywords:
-
driving behavior recognition; model pruning; target detection; attitude estimation; collaborative detection; model optimization; deep learning; convolutional neural network
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202101024
- 摘要:
-
本文针对危险驾驶识别中主流行为检测算法可靠性差的问题,提出了一种快速、可靠的视觉协同分析方法。对手机、水杯、香烟等敏感物体进行目标检测,提出的LW(low weight)-Yolov4(You only look once v4)通过去除CSPDarknet53(cross stage partial Darknet53)卷积层中不重要的要素通道提升了检测速度,并L1正则化产生稀疏权值矩阵,添加到BN(batch normalization)层的梯度中,实现优化网络模型的目的;提出姿态检测算法对驾驶员指关节关键点进行检测,经过仿射逆变换得到原始帧中的坐标;通过视觉协同分析对比敏感物品的检测框位置与驾驶员手部坐标是否重合,判定驾驶员是否出现违规驾驶行为及类别。实验结果表明,该方法在识别精度与检测速度方面均优于主流的算法,能够满足实时性和可靠性的检测要求。
- Abstract:
-
This study proposes a fast and reliable visual collaborative analysis method to improve the reliability of mainstream behavior detection algorithms in dangerous driving recognition. First, the algorithm performs target detection on sensitive objects such as mobile phones, water cups, and cigarettes. The proposed low weight-Yolov4 algorithm improves the detection speed by removing unimportant element channels in the cross-stage partial Darknet53 convolutional layer and regularizes L1 to generate a sparse weight matrix. Besides, the obtained matrix is added to the gradient of the batch normalization layer to optimize the network model. Then, an attitude detection algorithm is used to detect key points of the driver’s knuckles, and the coordinates in the original frame are obtained through the affine inverse transformation. Finally, the driver’s illegal driving behavior and its category are determined through visual collaborative analysis and comparison of the position of the detection frame of sensitive objects and coordinates of the driver’s hands. Experimental results show that the recognition accuracy and detection speed of the proposed method are better than those of mainstream algorithms, which can meet the detection requirements of real-time and reliability.
更新日期/Last Update:
2021-12-25