[1]马睿,周治平.结合地标点与自编码的快速多视图聚类网络[J].智能系统学报,2022,17(2):333-340.[doi:10.11992/tis.202101011]
 MA Rui,ZHOU Zhiping.Fast multiview clustering network combining landmark points and autoencoder[J].CAAI Transactions on Intelligent Systems,2022,17(2):333-340.[doi:10.11992/tis.202101011]
点击复制

结合地标点与自编码的快速多视图聚类网络

参考文献/References:
[1] 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327–336
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern recognition and artificial intelligence, 2014, 27(4): 327–336
[2] KUMAR A, DAUME III H. A co-training approach for multi-view spectral clustering[C]//Proceedings of the 28th International Conference on Machine Learning. Washington, USA, 2011: 393?400.
[3] 何雪梅. 多视图聚类算法综述[J]. 软件导刊, 2019, 18(4): 79–81,86
HE Xuemei. A survey of multi-view clustering algorithms[J]. Software guide, 2019, 18(4): 79–81,86
[4] CAO Xiaochun, ZHANG Changqing, FU Huazhu, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 586?594.
[5] WANG Xiaobo, GUO Xiaojie, LEI Zhen, et al. Exclusivity-consistency regularized multi-view subspace clustering[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 1?9.
[6] BRBI? M, KOPRIVA I. Multi-view low-rank sparse subspace clustering[J]. Pattern recognition, 2018, 73: 247–258.
[7] NIE Feiping, LI Jing, LI Xuelong, et al. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, Australia, 2017: 2564?2570.
[8] WANG Xiaobo, LEI Zhen, GUO Xiaojie, et al. Multi-view subspace clustering with intactness-aware similarity[J]. Pattern recognition, 2019, 88: 50–63.
[9] LI Ruihuang, ZHANG Changqing, HU Qinghua, et al. Flexible multi-view representation learning for subspace clustering[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao, China, 2016: 2916?2922.
[10] CAI Xiao, NIE Feiping, HUANG Heng, et al. Heterogeneous image feature integration via multi-modal spectral clustering[C]//Proceedings of the CVPR 2011. Colorado Springs, USA, 2011: 1977?1984.
[11] CAI Xiao, NIE Feiping, HUANG Heng. Multi-view K-means clustering on big data[C]//Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Beijing, China, 2013: 2598?2604.
[12] HE Li, RAY N, GUAN Yisheng, et al. Fast large-scale spectral clustering via explicit feature mapping[J]. IEEE transactions on cybernetics, 2019, 49(3): 1058–1071.
[13] TIAN Fei, GAO Bin, CUI Qing, et al. Learning deep representations for graph clustering[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Québec, Canada, 2014: 1293?1299.
[14] YIN Wanpeng, ZHU En, ZHU Xinzhong, et al. Landmark-based spectral clustering with local similarity representation[C]//Proceedings of the 35th National Conference of Theoretical Computer Science. Wuhan, China, 2017: 198-207.
[15] BANIJAMALI E, GHODSI A. Fast spectral clustering using autoencoders and landmarks[C]//Proceedings of the 14th International Conference Image Analysis and Recognition. Montreal, Canada, 2017: 380?388.
[16] CHEN Xinlei, CAI Deng. Large scale spectral clustering with landmark-based representation[C]//Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. San Francisco, USA, 2011: 7?11.
[17] 叶茂, 刘文芬. 基于快速地标采样的大规模谱聚类算法[J]. 电子与信息学报, 2017, 39(2): 278–284
YE Mao, LIU Wenfang. Large scale spectral clustering based on fast landmark sampling[J]. Journal of electronics & information technology, 2017, 39(2): 278–284
[18] RAFAILIDIS D, CONSTANTINOU E, MANOLOPOULOS Y. Landmark selection for spectral clustering based on Weighted PageRank[J]. Future generation computer systems, 2017, 68: 465–472.
[19] ZHANG Guangyu, ZHOU Yuren, HE Xiaoyu, et al. One-step kernel multi-view subspace clustering[J]. Knowledge-based systems, 2020, 189: 105126.
[20] LI Xinning, ZHAO Xiaoxiao, CHU Derun, et al. An autoencoder-based spectral clustering algorithm[J]. Soft computing, 2020, 24(3): 478–487.
[21] XIE Junyuan, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA, 2016: 478?487.
相似文献/References:
[1]储德润,周治平.加权PageRank改进地标表示的自编码谱聚类算法[J].智能系统学报,2020,15(2):302.[doi:10.11992/tis.201904021]
 CHU Derun,ZHOU Zhiping.An autoencoder spectral clustering algorithm for improving landmark representation by weighted PageRank[J].CAAI Transactions on Intelligent Systems,2020,15():302.[doi:10.11992/tis.201904021]
[2]刘相男,丁世飞,王丽娟.基于深度图正则化矩阵分解的多视图聚类算法[J].智能系统学报,2022,17(1):158.[doi:10.11992/tis.202104046]
 LIU Xiangnan,DING Shifei,WANG Lijuan.A multi-view clustering algorithm based on deep matrix factorization with graph regularization[J].CAAI Transactions on Intelligent Systems,2022,17():158.[doi:10.11992/tis.202104046]
[3]王丽娟,丁世飞,夏菁.基于多样性的多视图低秩稀疏子空间聚类算法[J].智能系统学报,2023,18(2):399.[doi:10.11992/tis.202110026]
 WANG Lijuan,DING Shifei,XIA Jing.Multiview low-rank sparse subspace clustering based on diversity[J].CAAI Transactions on Intelligent Systems,2023,18():399.[doi:10.11992/tis.202110026]

备注/Memo

收稿日期:2021-01-08。
作者简介:马睿,硕士研究生,主要研究方向为多视图聚类;周治平,教授,主要研究方向为智能检测、自动化装置、网络安全。发表学术论文80余篇
通讯作者:周治平.E-mail:zzp@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com