[1]陈彤,陈秀宏.特征自表达和图正则化的鲁棒无监督特征选择[J].智能系统学报,2022,17(2):286-294.[doi:10.11992/tis.202012043]
 CHEN Tong,CHEN Xiuhong.Feature self-representation and graph regularization for robust unsupervised feature selection[J].CAAI Transactions on Intelligent Systems,2022,17(2):286-294.[doi:10.11992/tis.202012043]
点击复制

特征自表达和图正则化的鲁棒无监督特征选择

参考文献/References:
[1] NIE Feiping, HUANG Heng, CAI Xiao, et al. Efficient and robust feature selection via joint l2, 1-norms minimization[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. Vancouver, Canada, 2010: 1813-1821.
[2] ZHAO Jidong, LU Ke, HE Xiaofei. Locality sensitive semi-supervised feature selection[J]. Neurocomputing, 2008, 71(10/12): 1842–1849.
[3] HE Xiaofei, CAI Deng, NIYOGI P. Laplacian score for feature selection[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems. Vancouver, Canada, 2005: 507-514.
[4] HOU Chenping, NIE Feiping, LI Xuelong, et al. Joint embedding learning and sparse regression: a framework for unsupervised feature selection[J]. IEEE transactions on cybernetics, 2014, 44(6): 793–804.
[5] TABAKHI S, MORADI P, AKHLAGHIAN F. An unsupervised feature selection algorithm based on ant colony optimization[J]. Engineering applications of artificial intelligence, 2014, 32: 112–123.
[6] CAI Deng, ZHANG Chiyuan, HE Xiaofei. Unsupervised feature selection for multi-cluster data[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2010: 333-342.
[7] ADHIKARY J R, MURTY M N. Feature selection for unsupervised learning[C]//Proceedings of 19th International Conference on Neural Information Processing. Doha, Qatar, 2012: 382-389.
[8] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 1-425.
[9] LI Hao, WANG Yongli, LI Yanchao, et al. Joint local structure preservation and redundancy minimization for unsupervised feature selection[J]. Applied intelligence, 2020, 50(12): 4394–4411.
[10] LIU Yanfang, YE Dongyi, LI Wenbin, et al. Robust neighborhood embedding for unsupervised feature selection[J]. Knowledge-based systems, 2020, 193: 105462.
[11] LIU Xinwang, WANG Lei, ZHANG Jian, et al. Global and local structure preservation for feature selection[J]. IEEE transactions on neural networks and learning systems, 2014, 25(6): 1083–1095.
[12] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323–2326.
[13] HE Xiaofei, NIYOGI P. Locality preserving projections[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems. Whistler, Canada, 2003: 153-160.
[14] ZHANG Tianhao, YANG Jie, ZHAO Deli, et al. Linear local tangent space alignment and application to face recognition[J]. Neurocomputing, 2007, 70(7/8/9): 1547–1553.
[15] ZHU Pengfei, ZUO Wangmeng, ZHANG Lei, et al. Unsupervised feature selection by regularized self-representation[J]. Pattern recognition, 2015, 48(2): 438–446.
[16] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(7): 711–720.
[17] SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Sarasota, USA, 1994: 138-142.
[18] NIE Feiping, HUANG Heng. Subspace clustering via new low-rank model with discrete group structure constraint[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, USA, 2016.
[19] MARTíNEZ A M, BENAVENTE R. The AR face database: CVC Technical Report #24[R]. Barcelona, Computer Vision Center, 1998.
[20] HULL J J. A database for handwritten text recognition research[J]. IEEE transactions on pattern analysis and machine intelligence, 1994, 16(5): 550–554.
[21] DU Jixiang, WANG Xiaofeng, ZHANG Guojun. Leaf shape based plant species recognition[J]. Applied mathematics and computation, 2007, 185(2): 883–893.
[22] LI Zechao, YANG Yi, LIU Jing, et al. Unsupervised feature selection using nonnegative spectral analysis[C]//Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. Toronto, Canada, 2012: 1026-1032.
[23] NIE Feiping, ZHU Wei, LI Xuelong. Unsupervised feature selection with structured graph optimization[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, Arizona, 2016: 1302-1308.
[24] TANG Chang, ZHU Xinzhong, CHEN Jiajia, et al. Robust graph regularized unsupervised feature selection[J]. Expert systems with applications, 2018, 96: 64–76.
[25] TANG Chang, BIAN Meiru, LIU Xinwang, et al. Unsupervised feature selection via latent representation learning and manifold regularization[J]. Neural networks, 2019, 117: 163–178.
相似文献/References:
[1]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2():34.
[2]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[3]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[4]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8():189.
[5]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10():215.[doi:10.3969/j.issn.1673-4785.201405063]
[6]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10():583.[doi:10.3969/j.issn.1673-4785.201412001]
[7]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(2):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9():210.[doi:10.3969/j.issn.1673-4785.201307014]
[8]郭雨萌,李国正.一种多标记数据的过滤式特征选择框架[J].智能系统学报,2014,9(3):292.[doi:10.3969/j.issn.1673-4785.201403064]
 GUO Yumeng,LI Guozheng.A filtering framework for the multi-label feature selection[J].CAAI Transactions on Intelligent Systems,2014,9():292.[doi:10.3969/j.issn.1673-4785.201403064]
[9]滕旭阳,董红斌,孙静.面向特征选择问题的协同演化方法[J].智能系统学报,2017,12(1):24.[doi:10.11992/tis.201611029]
 TENG Xuyang,DONG Hongbin,SUN Jing.Co-evolutionary algorithm for feature selection[J].CAAI Transactions on Intelligent Systems,2017,12():24.[doi:10.11992/tis.201611029]
[10]路子祥,屠黎阳,祖辰,等.基于脑连接网络的阿尔茨海默病临床变量值预测[J].智能系统学报,2017,12(3):355.[doi:10.11992/tis.201607020]
 LU Zixiang,TU Liyang,ZU Chen,et al.Prediction of clinical variables in Alzheimer’s disease using brain connective networks[J].CAAI Transactions on Intelligent Systems,2017,12():355.[doi:10.11992/tis.201607020]
[11]严菲,王晓栋.鲁棒的半监督多标签特征选择方法[J].智能系统学报,2019,14(4):812.[doi:10.11992/tis.201809017]
 YAN Fei,WANG Xiaodong.A robust, semi-supervised, and multi-label feature selection method[J].CAAI Transactions on Intelligent Systems,2019,14():812.[doi:10.11992/tis.201809017]

备注/Memo

收稿日期:2020-12-28。
基金项目:江苏省研究生科研与实践创新计划项目(JNKY19_074)
作者简介:陈彤,女,硕士研究生,主要研究方向为数字图像处理和模式识别;陈秀宏,男,教授,博士后,主要研究方向为数字图像处理和模式识别、优化理论与方法。发表学术论文120余篇
通讯作者:陈秀宏.E-mail:xiuhongc@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com