[1]赵文清,杨盼盼.双向特征融合与注意力机制结合的目标检测[J].智能系统学报,2021,16(6):1098-1105.[doi:10.11992/tis.202012029]
ZHAO Wenqing,YANG Panpan.Target detection based on bidirectional feature fusion and an attention mechanism[J].CAAI Transactions on Intelligent Systems,2021,16(6):1098-1105.[doi:10.11992/tis.202012029]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第6期
页码:
1098-1105
栏目:
学术论文—知识工程
出版日期:
2021-11-05
- Title:
-
Target detection based on bidirectional feature fusion and an attention mechanism
- 作者:
-
赵文清1,2, 杨盼盼1
-
1. 华北电力大学 控制与计算机工程学院,河北 保定 071003;
2. 复杂能源系统智能计算教育部工程研究中心,河北 保定 071003
- Author(s):
-
ZHAO Wenqing1,2, YANG Panpan1
-
1. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China;
2. Engineering Research Center of the Ministry of education for Intelligent Computing of Complex Energy System, Baoding 071003, China
-
- 关键词:
-
特征金字塔; 双向融合; 特征提取; SeNet注意力机制; 样本; 语义信息; 目标检测; 深度学习
- Keywords:
-
feature pyramid; bidirectional fusion; feature extraction; SeNet attention mechanism; sample; semantic information; target detection; deep learning
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202012029
- 摘要:
-
目标检测使用特征金字塔检测不同尺度的物体时,忽略了高层信息和低层信息之间的关系,导致检测效果差;此外,针对某些尺度的目标,检测中容易出现漏检。本文提出双向特征融合与注意力机制结合的方法进行目标检测。首先,对SSD(single shot multibox detector)模型深层特征层与浅层特征层进行特征融合,然后将得到的特征与深层特征层进行融合。其次,在双向融合中加入了通道注意力机制,增强了语义信息。最后,提出了一种改进的正负样本判定策略,降低目标的漏检率。将本文提出的算法与当前主流算法在VOC数据集上进行了比较,结果表明,本文提出的算法在对目标进行检测时,目标平均准确率有较大提高。
- Abstract:
-
When using a feature pyramid to detect objects of different dimensions, the relationship between high- and low-level information is ignored, resulting in a poor detection effect; in addition, for targets of a certain scale, detection is easily missed. In this paper, a method combining bidirectional feature fusion and an attention mechanism is proposed for target detection. First, the deep and shallow feature layers of the single-shot multibox detector (SSD) model are fused, then the obtained features are fused with the deep feature layer. Second, the channel attention mechanism is added to the two-way fusion to enhance semantic information. Finally, an improved positive and negative sample decision strategy is proposed to reduce the target misdetection rate. The algorithm proposed in this paper is compared with the current mainstream algorithms in the VOC dataset. The results show that the average accuracy of the proposed algorithm is greatly improved when detecting targets.
更新日期/Last Update:
2021-12-25