[1]姜义,吕荣镇,刘明珠,等.基于生成对抗网络的人脸口罩图像合成[J].智能系统学报,2021,16(6):1073-1080.[doi:10.11992/tis.202012010]
JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16(6):1073-1080.[doi:10.11992/tis.202012010]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第6期
页码:
1073-1080
栏目:
学术论文—智能系统
出版日期:
2021-11-05
- Title:
-
Masked face image synthesis based on a generative adversarial network
- 作者:
-
姜义, 吕荣镇, 刘明珠, 韩闯
-
哈尔滨理工大学 测控技术与通信工程学院,黑龙江 哈尔滨 150080
- Author(s):
-
JIANG Yi, LYU Rongzhen, LIU Mingzhu, HAN Chuang
-
School of Measurement-Control Technology and Communications Engineering, Harbin University of Science and Technology, Harbin 150080, China
-
- 关键词:
-
深度学习; 生成对抗网络; 空间变换; 卷积神经网络; 图像融合; 口罩; 人脸数据集; 人脸识别
- Keywords:
-
deep learning; generative adversarial networks; spatial transformation; convolution neural network; image fusion; face mask; human face dataset; face recognition
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202012010
- 摘要:
-
为了解决现阶段缺乏被口罩遮挡的人脸数据集的问题,本文提出了基于生成对抗网络与空间变换网络相结合生成戴口罩的人脸图像的方法。本文的方法以生成对抗网络为基础,结合了多尺度卷积核对图像进行不同尺度的特征提取,并引入了沃瑟斯坦散度作为度量真实样本和合成样本之间的距离,并以此来优化生成器的性能。实验表明,所提方法能够在没有对原始图像进行任何标注的情况下有效地对人脸图像进行口罩佩戴,且合成的图像具有较高的真实性。
- Abstract:
-
This paper proposes a method for generating masked face images using a generative adversarial network (GAN) and spatial transformer networks. The proposed method is used to solve the present problem of lacking face datasets of people wearing masks. Based on the GAN, the proposed method introduces a multiscale convolution kernel to extract image characteristics in various dimensions. This method introduces the Wasserstein divergence to measure the distance between an authentic specimen and a synthetic specimen so that generator’s performance can be optimized. Experiments show that the proposed method can add a mask to a face image effectively without any annotations on the original image, and the synthesized image has high fidelity.
更新日期/Last Update:
2021-12-25