[1]陈新元,谢晟祎,陈庆强,等.结合卷积特征提取和路径语义的知识推理[J].智能系统学报,2021,16(4):729-738.[doi:10.11992/tis.202008007]
CHEN Xinyuan,XIE Shengyi,CHEN Qingqiang,et al.Knowledge-based inference on convolutional feature extraction and path semantics[J].CAAI Transactions on Intelligent Systems,2021,16(4):729-738.[doi:10.11992/tis.202008007]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第4期
页码:
729-738
栏目:
学术论文—知识工程
出版日期:
2021-07-05
- Title:
-
Knowledge-based inference on convolutional feature extraction and path semantics
- 作者:
-
陈新元1,2, 谢晟祎3, 陈庆强4, 刘羽5
-
1. 闽江学院 计算机与控制工程学院,福建 福州 350121;
2. 福州墨尔本理工职业学院 信息工程系,福建 福州 350121;
3. 福建农业职业技术学院 教学科研处,福建 福州 350181;
4. 福建工程学院 信息科学与工程学院,福建 福州 350118;
5. 福州墨尔本理工职业学院 现代教育技术中心,福建 福州 350121
- Author(s):
-
CHEN Xinyuan1,2, XIE Shengyi3, CHEN Qingqiang4, LIU Yu5
-
1. College of Computer and Control Engineering, Minjiang University, Fuzhou 350121, China;
2. Department of Information Engineering, Fuzhou Melbourne Polytechnic, Fuzhou 350121, China;
3. Teaching and Research Division,, Fujian Vocational College of Agriculture, Fuzhou 350181, China;
4. Information Science and Engineering College, Fujian University of Technology, Fuzhou 350118, China;
5. Modern Education Technical Center, Fuzhou Melbourne Polytechnic, Fuzhou 350121, China
-
- 关键词:
-
知识图谱; 知识推理; 嵌入表示; 路径信息; 卷积神经网络; 长短期记忆网络; 注意力机制; 链路预测
- Keywords:
-
knowledge graph; knowledge inference; embedding representation; path information; convolutional neural network (CNN); long-short term memory (LSTM); attention mechanism; link prediction
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202008007
- 摘要:
-
传统特征提取方法大多基于嵌入表达,常忽略了路径语义;基于关系路径的推理方法多考虑单一路径,性能仍有提升空间。为进一步提升知识推理能力,使用自定义的卷积神经网络框架编码随机游走生成的多条路径,利用双向长短期记忆网络的隐藏状态合并向量序列,结合注意力机制实现差异化的多路径语义信息集成,计算候选关系与实体对的概率得分,用于判断三元组是否成立。NELL995和FB15k-237数据集上的链路预测结果证明方案可行,F1等指标相比主流模型也有一定优势;进一步在大型数据集和稀疏数据集上验证方案可行。
- Abstract:
-
Embedding-based feature extraction methods usually ignore path semantics; there is still scope of improvement of relational path-based algorithms, which generally consider single paths. To further boost the performance of knowledge-based inferences, a self-defined convolutional neural network framework was employed to encode multiple paths generated by random walks into low-dimensional representations that are merged to form a single vector of hidden states with long-short term memory (LSTM); this is accomplished by combining the attention mechanism-based processes. Semantic information of multiple paths is integrated with various weight distributions used for measuring probability scores of triples comprising candidate relations and entity pairs to determine whether the triples hold or not. Link prediction experiments performed on NELL995 and FB15k-237 demonstrated the capability of the proposed model. Scores of F1 and other indicators also confirmed the advantages of our framework compared with mainstream models. The model was further tested on FC17 and NELL-One.
更新日期/Last Update:
1900-01-01