[1]赵壮壮,王骏,潘祥,等.任务间共享和特有结构分解的多任务TSK模糊系统建模[J].智能系统学报,2021,16(4):622-629.[doi:10.11992/tis.202007009]
ZHAO Zhuangzhuang,WANG Jun,PAN Xiang,et al.Multi-task TSK fuzzy system modeling based on inter-task common and special structure decomposition[J].CAAI Transactions on Intelligent Systems,2021,16(4):622-629.[doi:10.11992/tis.202007009]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第4期
页码:
622-629
栏目:
学术论文—机器学习
出版日期:
2021-07-05
- Title:
-
Multi-task TSK fuzzy system modeling based on inter-task common and special structure decomposition
- 作者:
-
赵壮壮1, 王骏2, 潘祥1, 邓赵红1, 施俊2, 王士同1
-
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122;
2. 上海大学 通信与信息工程学院,上海 200444
- Author(s):
-
ZHAO Zhuangzhuang1, WANG Jun2, PAN Xiang1, DENG Zhaohong1, SHI Jun2, WANG Shitong1
-
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China;
2. School of Communication & Information Engineering, Shanghai University, Shanghai 200444, China
-
- 关键词:
-
TSK模糊系统; 非线性; 多任务; 低秩; 稀疏; 参数分解; 泛化性能; 可解释性
- Keywords:
-
TSK fuzzy system; nonlinear; multitask; low-rank; sparse; parameter decomposition; generalization performance; interpretability
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.202007009
- 摘要:
-
现有的多任务Takagi-Sugeno-Kang (TSK) 模糊建模方法更注重利用任务间的相关性信息,而忽略了单个任务的特殊性。针对此问题,本文提出了一种考虑所有任务之间的共享结构和特有结构的TSK模糊系统多任务建模新方法。该方法将后件参数分解为共享参数和特有参数两个分量,既充分利用了任务间共享信息,又有效地保留了单个任务的特性。最后,本文利用增广拉格朗日乘子法(ALM)求解该最优化问题。实验结果表明,该方法比现有的模型获得了更好的表现。
- Abstract:
-
Existing Takagi–Sugeno–Kang (TSK) fuzzy system modeling methods pay more attention to the inter-task correlation but ignore the particularity of every single task. To address this issue, this paper proposes a novel multi-task modeling method for TSK fuzzy systems taking common and specific structures across all tasks (MTTSKFS-CS) into consideration. This method decomposes consequent parameters into shared and special ones, which not only takes advantage of the shared information among tasks but also effectively preserves the characteristics of individual tasks. Finally, the study uses the augmented Lagrange multiplier for optimization. The experimental results demonstrate the better performance of the proposed model compared with other existing methods.
更新日期/Last Update:
1900-01-01