[1]潘庆先,殷增轩,董红斌,等.基于禁忌搜索的时空众包任务分配算法[J].智能系统学报,2020,15(6):1040-1048.[doi:10.11992/tis.202006055]
PAN Qingxian,YIN Zengxuan,DONG Hongbin,et al.Spatiotemporal crowdsourcing task assignment algorithm based on tabu search[J].CAAI Transactions on Intelligent Systems,2020,15(6):1040-1048.[doi:10.11992/tis.202006055]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第6期
页码:
1040-1048
栏目:
学术论文—智能系统
出版日期:
2020-11-05
- Title:
-
Spatiotemporal crowdsourcing task assignment algorithm based on tabu search
- 作者:
-
潘庆先1,2, 殷增轩2, 董红斌1, 高照龙3, 童向荣2
-
1. 哈尔滨工程大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001;
2. 烟台大学 计算机与控制工程学院, 山东 烟台 264005;
3. 德拉萨大学达斯玛里纳斯校区 科学与计算机学院, 甲米地 达斯玛里纳斯 999005
- Author(s):
-
PAN Qingxian1,2, YIN Zengxuan2, DONG Hongbin1, GAO Zhaolong3, TONG Xiangrong2
-
1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;
2. College of Computer and Control Engineering, Yantai University, Yantai 264005, China;
3. College of Science and Computer Studies, DE la Salle University-Dasmarinas, Dasmarinas 999005, Philippines
-
- 关键词:
-
时空众包; 任务分配; 路径规划; 禁忌搜索算法; 自适应阈值; 3类对象; 服务质量; 报酬
- Keywords:
-
spatiotemporal crowdsourcing; task assignment; route planning; tabu search; adaptive threshold; three types of objects; service quality; reward
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.202006055
- 摘要:
-
为了在时空众包任务分配过程中减少移动成本、缩短任务完成时间,本文将时空众包和路径规划问题结合起来,提出了一种基于自适应阈值的禁忌搜索算法,该算法通过在线学习的方式,进行路径规划设计,计算出每个任务合理的预估等待时间,匹配区域内的众包任务,并在最短的时间内完成任务。通过实验对比,本文所提算法在任务耗费时间上平均比Adaptive RT算法降低13%,比ASPT算法降低23.3%。在移动成本上比Adaptive RT算法降低了6.99%,比ASPT算法降低了25.9%。
- Abstract:
-
To reduce the moving cost and task completion time of the distribution process in a spatiotemporal crowdsourcing task, in this paper, by combining spatiotemporal crowdsourcing and path planning, a tabu search algorithm based on adaptive threshold is proposed. This algorithm uses online learning for path planning and designs a reasonable estimated waiting time for each task by matching crowdsourcing tasks in the area, thus, completing tasks in the shortest time. Through experimental comparison, we concluded that the average task time of the algorithm proposed in this paper is 13% and 23.3% lower than that of the Adaptive RT and ASPT algorithms, respectively, and the moving cost of the proposed algorithm is 6.99% and 25.9% lower than that of the Adaptive RT and ASPT algorithms, respectively.
备注/Memo
收稿日期:2020-06-30。
基金项目:国家自然科学基金项目(60903098,61502140,61572418,61472095);黑龙江自然科学基金项目(LH2020F023)
作者简介:潘庆先,副教授,博士研究生,主要研究方向为人工智能和机器学习;殷增轩,硕士研究生,主要研究方向为人工智能和机器学习;董红斌,教授,博士生导师,博士,中国计算机学会高级会员,主要研究方向为机器学习、人工智能、多智能体系统和数据挖掘。主持或参加国家级和省部级项目5项,其中,国家级3项,省级2项,曾获黑龙江省高校科学技术奖、黑龙江省优秀高等教育科学成果奖。发表学术论文90余篇,出版专著1部,主编教材2部
通讯作者:殷增轩.E-mail:yzxytu@163.com
更新日期/Last Update:
2020-12-25