[1]程鹏超,杜军平,薛哲.基于多路交叉的用户金融行为预测[J].智能系统学报,2021,16(2):378-384.[doi:10.11992/tis.202006054]
CHENG Pengchao,DU Junping,XUE Zhe.Prediction of user financial behavior based on multi-way crossing[J].CAAI Transactions on Intelligent Systems,2021,16(2):378-384.[doi:10.11992/tis.202006054]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第2期
页码:
378-384
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2021-03-05
- Title:
-
Prediction of user financial behavior based on multi-way crossing
- 作者:
-
程鹏超, 杜军平, 薛哲
-
北京邮电大学 智能通信软件与多媒体北京市重点实验室,北京 100876
- Author(s):
-
CHENG Pengchao, DU Junping, XUE Zhe
-
Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
- 关键词:
-
行为预测; 金融; 多路交叉; 残差; 多塔模型; 预训练; 挖掘; 联合训练
- Keywords:
-
behavior prediction; financial; multi-way crossing; residual; multi-tower model; pre-training; mining; joint training
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202006054
- 摘要:
-
针对通过挖掘用户的金融行为来改善金融领域的服务模式和服务质量的问题,本文提出了一种基于多路交叉特征的用户金融行为预测算法。根据数据包含的属性构建训练的特征,基于因子分解机模型(FM)利用下游行为预测任务对金融数据的特征进行预训练,获取数据特征的隐含向量。引入特征交叉层对金融数据的高阶特征进行提取,解决FM线性模型只能提取低阶特征的缺点。利用残差网络对金融数据的高阶特征进行提取,解决深度神经网络在提取金融数据高阶特征时由于网络层数过深而导致的梯度消失的问题。最后,将FM、特征交叉网络和残差网络整合为统一的多塔模型进行用户金融行为预测,并融合低阶特征与高阶特征进行用户金融行为预测。在多个数据集上对算法的有效性进行了实验验证,实验结果表明,所提出的算法能够取得较好的用户金融行为预测的准确率。
- Abstract:
-
To improve the service mode and service quality in the financial field by mining the financial behaviors of users, a user financial behavior prediction algorithm based on multi-way crossing (MCUP) is proposed in this paper. First, the training features are constructed based on the attributes contained in the data. Based on the FM model, the downstream behavior prediction tasks are used to pre-train the features of the financial data, and the hidden vectors of the features are obtained. Second, the feature cross-layer is introduced to extract high-order features of financial data, overcoming the disadvantage that the FM linear model can only extract low-order features. Then, the residual network structure is used to extract high-order features of financial data, solving the gradient disappearance problem caused by the too deep network layer. Finally, a unified multi-tower model integrated by the FM, feature cross network, and residual network is used to predict user financial behavior, blending low-order and high-order features. Experimental results show that the proposed algorithm can achieve a better accuracy rate in predicting user financial behavior.
备注/Memo
收稿日期:2020-06-30。
基金项目:国家重点研发计划项目(2018YFB1402600);国家自然科学基金项目(61772083,61802028);广西省科技重大专项(桂科AA18118054)
作者简介:程鹏超,硕士研究生,主要研究方向为机器学习、广告推荐、信息检索;杜军平,教授,博士生导师,主要研究方向为人工智能、社交网络分析、数据挖掘、运动图像处理。主持国家重点研发计划、“863”、“973”计划项目、国家自然科学基金重点项目、国家自然科学基金重大国际合作项目、北京市自然科学基金重点项目等多项。发表学术论文400余篇,出版学术专著6部;薛哲,副教授,主要研究方向为机器学习、人工智能、数据挖掘、图像处理。主持国家自然科学基金青年基金项目、参与国家重点研发计划项目等多项。发表学术论文30余篇,出版学术专著1部
通讯作者:杜军平.E-mail:junpingdu@126.com
更新日期/Last Update:
2021-04-25