[1]杜航原,张晶,王文剑.一种深度自监督聚类集成算法[J].智能系统学报,2020,15(6):1113-1120.[doi:10.11992/tis.202006050]
 DU Hangyuan,ZHANG Jing,WANG Wenjian.A deep self-supervised clustering ensemble algorithm[J].CAAI Transactions on Intelligent Systems,2020,15(6):1113-1120.[doi:10.11992/tis.202006050]
点击复制

一种深度自监督聚类集成算法

参考文献/References:
[1] HAN Jiawei, KAMBER M, PEI Jian. Data mining: concepts and techniques[M]. 3rd ed. Amsterdam: Elsevier, 2012: 223-259.
[2] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1): 48-61
SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of software, 2008, 19(1): 48-61
[3] JUDD D, MCKINLEY P K, JAIN A K. Large-scale parallel data clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 1998, 20(8): 871-876.
[4] BHATIA S K, DEOGUN J S. Conceptual clustering in information retrieval[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 1998, 28(3): 427-436.
[5] FRIGUI H, KRISHNAPURAM R. A robust competitive clustering algorithm with applications in computer vision[J]. IEEE transactions on pattern analysis and machine intelligence, 1999, 21(5): 450-465.
[6] FERN X Z, LIN Wei. Cluster ensemble selection[J]. Statistical analysis and data mining, 2008, 1(3): 128-141.
[7] 罗会兰. 聚类集成关键技术研究[D]. 杭州: 浙江大学, 2007.
LUO Huilan. Research on key technologies of clustering ensemble[D]. Hangzhou: Zhejiang University, 2007.
[8] FRED A L N. Finding consistent clusters in data partitions[C]//Proceedings of the 2nd International Workshop on Multiple Classifier Systems. Cambridge, UK, 2001: 309-318.
[9] STREHL A, GHOSH J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J]. Journal of machine learning research, 2003, 3: 583-617.
[10] FRED A L N, JAIN A K. Data clustering using evidence Accumulation[C]//Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02). Quebec City, Canada, 2002: 276-280.
[11] WANG Xi, YANG Chunyu, ZHOU Jie. Clustering aggregation by probability accumulation[J]. Pattern recognition, 2009, 42(5): 668-675.
[12] 杨草原, 刘大有, 杨博, 等. 聚类集成方法研究[J]. 计算机科学, 2011, 38(2): 166-170
YANG Caoyuan, LIU Dayou, YANG Bo, et al. Research on cluster aggregation approaches[J]. Computer science, 2011, 38(2): 166-170
[13] ZHOU Zhihua, TANG Wei. Clusterer ensemble[J]. Knowledge-based systems, 2006, 19(1): 77-83.
[14] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on neural networks, 2009, 20(1): 61-80.
[15] WU Z, PAN S, CHEN F. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2019(02): 4-24.
[16] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland, 2008: 1096-1103.
[17] TIAN Fei, GAO Bin, CUI Qing, et al. Learning deep representations for graph clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec City, Canada, 2014: 1293-1299.
[18] IAM-ON N, BOONGOEN T, GARRETT S. LCE: a link-based cluster ensemble method for improved gene expression data analysis[J]. Bioinformatics, 2010, 26(12): 1513-1519.
[19] WANG Chun, PAN Shirui, HU Ruiqi, et al. Attributed graph clustering: a deep Attentional embedding approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China, 2019: 3670-3676.
[20] KIPF T N, WELLING M. Variational graph auto-encoders[J/OL]. Available: http://axrxiv.org/abs/1611.07308.2016.
[21] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(86): 2579-2605.
[22] XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[J]. Computer science, 2015: 478-487.
[23] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and computing, 2007, 17(4): 395-416.
相似文献/References:
[1]朱? 林,王士同,修? 宇.鲁棒的模糊方向相似性聚类算法[J].智能系统学报,2008,3(1):43.
 ZHU Lin,WANG Shi-tong,XIU Yu.A robust clustering algorithm with fuzzy directional similarity[J].CAAI Transactions on Intelligent Systems,2008,3():43.
[2]申彦,朱玉全.CMP上基于数据集划分的K-means多核优化算法[J].智能系统学报,2015,10(4):607.[doi:10.3969/j.issn.1673-4785.201411036]
 SHEN Yan,ZHU Yuquan.An optimized algorithm of K-means based on data set partition on CMP systems[J].CAAI Transactions on Intelligent Systems,2015,10():607.[doi:10.3969/j.issn.1673-4785.201411036]
[3]郭瑛洁,王士同,许小龙.基于最大间隔理论的组合距离学习算法[J].智能系统学报,2015,10(6):843.[doi:10.11992/tis.201504027]
 GUO Yingjie,WANG Shitong,XU Xiaolong.Learning a linear combination of distances based on the maximum-margin theory[J].CAAI Transactions on Intelligent Systems,2015,10():843.[doi:10.11992/tis.201504027]
[4]陈爱国,王士同.基于极大熵的知识迁移模糊聚类算法[J].智能系统学报,2017,12(1):95.[doi:10.11992/tis.201602003]
 CHEN Aiguo,WANG Shitong.A maximum entropy-based knowledge transfer fuzzy clustering algorithm[J].CAAI Transactions on Intelligent Systems,2017,12():95.[doi:10.11992/tis.201602003]
[5]淦文燕,刘冲.一种改进的搜索密度峰值的聚类算法[J].智能系统学报,2017,12(2):229.[doi:10.11992/tis.201512036]
 GAN Wenyan,LIU Chong.An improved clustering algorithm that searches and finds density peaks[J].CAAI Transactions on Intelligent Systems,2017,12():229.[doi:10.11992/tis.201512036]
[6]周晶雨,王士同.对不平衡目标域的多源在线迁移学习[J].智能系统学报,2022,17(2):248.[doi:10.11992/tis.202012019]
 ZHOU Jingyu,WANG Shitong.Multi-source online transfer learning for imbalanced target domains[J].CAAI Transactions on Intelligent Systems,2022,17():248.[doi:10.11992/tis.202012019]
[7]殷建华,刘振丙,魏黄曌.基于稀疏重构消歧的偏标记分类算法[J].智能系统学报,2023,18(4):708.[doi:10.11992/tis.202202024]
 YIN Jianhua,LIU Zhenbing,WEI Huangzhao.Partial label classification algorithm based on sparse reconstruction disambiguation[J].CAAI Transactions on Intelligent Systems,2023,18():708.[doi:10.11992/tis.202202024]
[8]季友昌,袁伟伟,毛善斌,等.不平衡小样本基于局部域对抗适应网络的发动机振动预测模型[J].智能系统学报,2023,18(5):1005.[doi:10.11992/tis.202210030]
 JI Youchang,YUAN Weiwei,MAO Shanbin,et al.Partial domain adversarial adaptation networks for imbalanced small samples in aeroengine vibration prediction[J].CAAI Transactions on Intelligent Systems,2023,18():1005.[doi:10.11992/tis.202210030]
[9]毕晓君,毛亚菲.基于监督对比学习的小样本甲骨文字识别[J].智能系统学报,2024,19(1):106.[doi:10.11992/tis.202309008]
 BI Xiaojun,MAO Yafei.Few-shot oracle bone character recognition based on supervised contrastive learning[J].CAAI Transactions on Intelligent Systems,2024,19():106.[doi:10.11992/tis.202309008]

备注/Memo

收稿日期:2020-06-29。
基金项目:国家自然科学基金项目(61902227,61673249,61773247,U1805263);山西省国际合作重点研发计划项目(201903D421050);山西省基础研究计划项目(201901D211192);山西省应用基础研究计划项目(201701D121053);山西省1331工程项目
作者简介:杜航原,副教授,博士,主要研究方向为机器学习、社会网络。主持和参与国家级、省部级科研项目7项。发表学术论文10余篇。;张晶,硕士研究生,主要研究方向为数据挖掘与机器学习。;王文剑,教授,博士生导师,博士,国家自然科学基金委信息学部自动化学科会评专家,中国人工智能学会理事、中国人工智能学会机器学习专委会常务委员、知识工程与分布智能专委会委员、粗糙集与软计算专业委员会委员,中国计算机学会人工智能与模式识别专委会委员,中国计算机学会太原分部监督委员会主席、ACM太原分部副主席,并担任多个国际国内学术会议的程序委员会主席或委员,主要研究方向为机器学习与数据挖掘。主持国家自然科学基金项目4项。发表学术论文150余篇。
通讯作者:王文剑.E-mail:wjwang@sxu.edu.cn

更新日期/Last Update: 2020-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com