[1]唐荣,罗川,曹潜,等.不完备数据中面向特征值更新的增量特征选择方法[J].智能系统学报,2021,16(3):493-501.[doi:10.11992/tis.202006045]
 TANG Rong,LUO Chuan,CAO Qian,et al.Incremental approach for feature selection in incomplete data while updating feature values[J].CAAI Transactions on Intelligent Systems,2021,16(3):493-501.[doi:10.11992/tis.202006045]
点击复制

不完备数据中面向特征值更新的增量特征选择方法

参考文献/References:
[1] KWAK N, CHOI C H. Input feature selection by mutual information based on Parzen window[J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(12):1667-1671.
[2] SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based on similarity[J]. IEEE transactions on knowledge and data engineering, 2000, 12(2):331-336.
[3] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information sciences, 1998, 112(1/2/3/4):39-49.
[4] PARTHALáIN N M, SHEN Qiang. Exploring the boundary region of tolerance rough sets for feature selection[J]. Pattern recognition, 2009, 42(5):655-667.
[5] MENG Zuqiang, SHI Zhongzhi. Extended rough set-based attribute reduction in inconsistent incomplete decision systems[J]. Information sciences, 2012, 204:44-69.
[6] GRZYMALA-BUSSE J W, CLARK P G, KUEHNHAUSEN M. Generalized probabilistic approximations of incomplete data[J]. International journal of approximate reasoning, 2014, 55(1):180-196.
[7] QIAN Yuhua, LIANG Jiye, PEDRYCZ W, et al. An efficient accelerator for attribute reduction from incomplete data in rough set framework[J]. Pattern recognition, 2011, 44(8):1658-1670.
[8] DAI Jianhua. Rough set approach to incomplete numerical data[J]. Information sciences, 2013, 241:43-57.
[9] YANG Xibei, YANG Jingyu, WU Chen, et al. Dominance-based rough set approach and knowledge reductions in incomplete ordered information system[J]. Information sciences, 2008, 178(4):1219-1234.
[10] LIANG Jiye, XU Zongben. The algorithm on knowledge reduction in incomplete information systems[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2002, 10(1):95-103.
[11] QIAN Yuhua, LIANG Jiye, WANG Feng. A new method for measuring the uncertainty in incomplete information systems[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2009, 17(6):855-880.
[12] DAI Jianhua, WANG Wentao, XU Qing. An uncertainty measure for incomplete decision tables and its applications[J]. IEEE transactions on cybernetics, 2013, 43(4):1277-1289.
[13] ZHAO Hua, QIN Keyun. Mixed feature selection in incomplete decision table[J]. Knowledge-based systems, 2014, 57:181-190.
[14] RAGHAVAN V, HAFEZ A. Dynamic data mining[C]//Proceedings of the 13th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. New Orleans, Louisiana, USA, 2000.
[15] LI Tianrui, RUAN Da, GEERT W, et al. A rough sets based characteristic relation approach for dynamic attribute generalization in data mining[J]. Knowledge-based systems, 2007, 20(5):485-494.
[16] XU Yitian, WANG Laisheng, ZHANG Ruiyan. A dynamic attribute reduction algorithm based on 0-1 integer programming[J]. Knowledge-based systems, 2011, 24(8):1341-1347.
[17] QIAN Jin, DANG Chuangyin, YUE Xiaodong, et al. Attribute reduction for sequential three-way decisions under dynamic granulation[J]. International journal of approximate reasoning, 2017, 85:196-216.
[18] YANG Yanyan, CHEN Degang, WANG Hui, et al. Incremental perspective for feature selection based on fuzzy rough sets[J]. IEEE transactions on fuzzy systems, 2018, 26(3):1257-1273.
[19] LANG Guangming, CAI Mingjie, FUJITA H, et al. Related families-based attribute reduction of dynamic covering decision information systems[J]. Knowledge-based systems, 2018, 162:161-173.
[20] WEI Wei, WU Xiaoying, LIANG Jiye, et al. Discernibility matrix based incremental attribute reduction for dynamic data[J]. Knowledge-based systems, 2018, 140:142-157.
[21] ZENG Anping, LI Tianrui, LIU Dun, et al. A fuzzy rough set approach for incremental feature selection on hybrid information systems[J]. Fuzzy sets and systems, 2015, 258:39-60.
[22] LIANG Jiye, WANG Feng, DANG Chuangyin, et al. A group incremental approach to feature selection applying rough set technique[J]. IEEE transactions on knowledge and data engineering, 2014, 26(2):294-308.
[23] SHU Wenhao, SHEN Hong. Incremental feature selection based on rough set in dynamic incomplete data[J]. Pattern recognition, 2014, 47(12):3890-3906.
[24] XIE Xiaojun, QIN Xiaolin. A novel incremental attribute reduction approach for dynamic incomplete decision systems[J]. International journal of approximate reasoning, 2018, 93:443-462.
[25] WANG Feng, LIANG Jiye, DANG Chuangyin. Attribute reduction for dynamic data sets[J]. Applied soft computing, 2013, 13(1):676-689.
[26] 刘吉超, 王锋, 宋鹏. 缺失数据的维数增量式特征选择[J]. 计算机工程与应用, 2019, 55(17):95-99
LIU Jichao, WANG Feng, SONG Peng. Dimension incremental feature selection algorithm for missing data[J]. Computer engineering and applications, 2019, 55(17):95-99
[27] 钱进, 朱亚炎. 面向成组对象集的增量式属性约简算法[J]. 智能系统学报, 2016, 11(4):496-502
QIAN Jin, ZHU Yayan. An incremental attribute reduction algorithm for group objects[J]. CAAI transactions on intelligent systems, 2016, 11(4):496-502
[28] QIAN Yuhua, DANG Chuangyin, LIANG Jiye, et al. On the evaluation of the decision performance of an incomplete decision table[J]. Data & knowledge engineering, 2008, 65(3):373-400.
相似文献/References:
[1]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34.
 SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2():34.
[2]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(5):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4():453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[3]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(3):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6():254.
[4]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8():189.
[5]曹晋,张莉,李凡长.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215.[doi:10.3969/j.issn.1673-4785.201405063]
 CAO Jin,ZHANG Li,LI Fanzhang.A noval support vector data description-based feature selection method[J].CAAI Transactions on Intelligent Systems,2015,10():215.[doi:10.3969/j.issn.1673-4785.201405063]
[6]张佳骕,蒋亦樟,王士同.基于特征选择聚类方法的稀疏TSK模糊系统[J].智能系统学报,2015,10(4):583.[doi:10.3969/j.issn.1673-4785.201412001]
 ZHANG Jiasu,JIANG Yizhang,WANG Shitong.Sparse TSK fuzzy system based on feature selection clustering method[J].CAAI Transactions on Intelligent Systems,2015,10():583.[doi:10.3969/j.issn.1673-4785.201412001]
[7]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(2):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9():210.[doi:10.3969/j.issn.1673-4785.201307014]
[8]郭雨萌,李国正.一种多标记数据的过滤式特征选择框架[J].智能系统学报,2014,9(3):292.[doi:10.3969/j.issn.1673-4785.201403064]
 GUO Yumeng,LI Guozheng.A filtering framework for the multi-label feature selection[J].CAAI Transactions on Intelligent Systems,2014,9():292.[doi:10.3969/j.issn.1673-4785.201403064]
[9]滕旭阳,董红斌,孙静.面向特征选择问题的协同演化方法[J].智能系统学报,2017,12(1):24.[doi:10.11992/tis.201611029]
 TENG Xuyang,DONG Hongbin,SUN Jing.Co-evolutionary algorithm for feature selection[J].CAAI Transactions on Intelligent Systems,2017,12():24.[doi:10.11992/tis.201611029]
[10]路子祥,屠黎阳,祖辰,等.基于脑连接网络的阿尔茨海默病临床变量值预测[J].智能系统学报,2017,12(3):355.[doi:10.11992/tis.201607020]
 LU Zixiang,TU Liyang,ZU Chen,et al.Prediction of clinical variables in Alzheimer’s disease using brain connective networks[J].CAAI Transactions on Intelligent Systems,2017,12():355.[doi:10.11992/tis.201607020]

备注/Memo

收稿日期:2020-06-27。
基金项目:国家自然科学基金项目(62076171);四川省科技厅应用基础研究计划项目(2019YJ0084)
作者简介:唐荣,硕士研究生,主要研究方向为数据挖掘与知识发现、粒计算与粗糙集;罗川,副教授,博士,中国人工智能学会粒计算与知识发现专业委员会委员,中国计算机学会会员、中国人工智能学会会员,主要研究方向为数据挖掘与知识发现,粒计算与粗糙集。主持国家自然科学基金项目2项,中国博士后科学基金2项。发表学术论文40余篇;曹潜,硕士研究生,主要研究方向为数据挖掘、粒计算与粗糙集
通讯作者:罗川.E-mall:cluo@scu.edu.cn

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com