[1]张晓鹤,陈德刚,米据生.基于信息熵的对象加权概念格[J].智能系统学报,2020,15(6):1097-1103.[doi:10.11992/tis.202006043]
 ZHANG Xiaohe,CHEN Degang,MI Jusheng.Object-weighted concept lattice based on information entropy[J].CAAI Transactions on Intelligent Systems,2020,15(6):1097-1103.[doi:10.11992/tis.202006043]
点击复制

基于信息熵的对象加权概念格

参考文献/References:
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M]//RIVAL I. Ordered Sets. Dordrecht: Springer, 1982: 445-470.
[2] SUTTON A, MALETIC J I. Recovering UML class models from C++: a detailed explanation[J]. Information and software technology, 2007, 49(3): 212-229.
[3] 黄微, 高俊峰. 基于概念格的Web学术信息搜索结果的二次组织[J]. 现代图书情报技术, 2010(5): 8-12
HUANG Wei, GAO Junfeng. A second organization of academic retrieved results based on concept lattice[J]. New technology of library and information service, 2010(5): 8-12
[4] 沈夏炯, 叶曼曼, 甘甜, 等. 基于概念格的信息检索及其树形可视化[J]. 计算机工程与应用, 2017, 53(3): 95-99
SHEN Xiajiong, YE Manman, GAN Tian, et al. Information retrieval based on concept lattice and its tree visualization[J]. Computer engineering and applications, 2017, 53(3): 95-99
[5] MISSAOUI R, GODIN R, BOUJENOUI A. Extracting exact and approximate rules from databases[C]//Proceedings of SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems. Berlin, Heidelberg: Springer, 1993: 209-222.
[6] 康向平, 苗夺谦. 一种基于概念格的集值信息系统中的知识获取方法[J]. 智能系统学报, 2016, 11(3): 287-293
KANG Xiangping, MIAO Duoqian. A knowledge acquisition method based on concept lattice in set-valued information systems[J]. CAAI transactions on intelligent systems, 2016, 11(3): 287-293
[7] LIU Yong, KANG Xiangping, MIAO Duoqian, et al. A knowledge acquisition method based on concept lattice and inclusion degree for ordered information systems[J]. International journal of machine learning and cybernetics, 2019, 10(11): 3245-3261.
[8] 张功亮, 陈钰, 周茜, 等. 基于领域本体的信息语义相关检索[J]. 计算机工程, 2011, 37(20): 33-35, 38
ZHANG Gongliang, CHEN Yu, ZHOU Xi, et al. Information semantic relativity retrieval based on domain ontology[J]. Computer engineering, 2011, 37(20): 33-35, 38
[9] 刘保相, 孟肖丽. 基于关联分析的气象云图识别问题研究[J]. 智能系统学报, 2014, 9(5): 595-601
LIU Baoxiang, MENG Xiaoli. The study on nephogram recognition based on relational analysis[J]. CAAI transactions on intelligent systems, 2014, 9(5): 595-601
[10] 陈湘, 吴跃. 基于概念格挖掘GIS中的关联规则[J]. 计算机应用, 2011, 31(3): 686-689
CHEN Xiang, WU Yue. Mining association rules of geographic information system based on concept lattice[J]. Journal of computer applications, 2011, 31(3): 686-689
[11] WU Weizhi, LEUNG Y, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE transactions on knowledge and data engineering, 2009, 21(10): 1461-1474.
[12] MI Jusheng, WU Weizhi, ZHANG Wenxiu. Approaches to knowledge reduction based on variable precision rough set model[J]. Information sciences, 2004, 159(3-4): 255-272.
[13] MI Jusheng, LEUNG Y, WU Weizhi. Approaches to attribute reduction in concept lattices induced by axialities[J]. Knowledge-based systems, 2010, 23(6): 504-511.
[14] CHEN Jinkun, LI Jinjin. An application of rough sets to graph theory[J]. Information sciences, 2012, 201: 114-127.
[15] CHEN Jinkun, MI Jusheng, XIE Bin, et al. A fast attribute reduction method for large formal decision contexts[J]. International journal of approximate reasoning, 2019, 106: 1-17.
[16] SHAO Mingwen, LEUNG Y, WU Weizhi. Rule acquisition and complexity reduction in formal decision contexts[J]. International journal of approximate reasoning, 2014, 55(1): 259-274.
[17] LI Jinhai, MEI Changlin, LV Yuejin. Knowledge reduction in decision formal contexts[J]. Knowledge-based systems, 2011, 24(5): 709-715.
[18] LI Jinhai, MEI Changlin, LV Yuejin. Knowledge reduction in real decision formal contexts[J]. Information sciences, 2012, 189: 191-207.
[19] LI Jinhai, MEI Changlin, WANG Junhong, et al. Rule-preserved object compression in formal decision contexts using concept lattices[J]. Knowledge-based systems, 2014, 71: 435-445.
[20] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[C]//Proceedings of the 9th International Conference on Rough Sets and Knowledge Technology. Shanghai: Springer, 2014: 732-741.
[21] REN Ruisi, WEI Ling. The attribute reductions of three-way concept lattices[J]. Knowledge-based systems, 2016, 99: 92-102.
[22] WEI Ling, LIU Lin, QI Jianjun, et al. Rules acquisition of formal decision contexts based on three-way concept lattices[J]. Information sciences, 2020, 516: 529-544.
[23] LI Junyu, WANG Xia, WU Weizhi, et al. Attribute reduction in inconsistent formal decision contexts based on congruence relations[J]. International journal of machine learning and cybernetics, 2017, 8(1): 81-94.
[24] 张继福, 张素兰, 郑链. 加权概念格及其渐进式构造[J]. 模式识别与人工智能, 2005, 18(2): 171-176
ZHANG Jifu, ZHANG Sulan, ZHENG Lian. Weighted concept lattice and incremental construction[J]. Pattern recognition and artificial intelligence, 2005, 18(2): 171-176
[25] 张素兰, 郭平, 张继福. 基于信息熵和偏差的加权概念格内涵权值获取[J]. 北京理工大学学报, 2011, 31(1): 59-63
ZHANG Sulan, GUO Ping, ZHANG Jifu. Intension weight value acquisition of weighted concept lattice based on information entropy and deviance[J]. Transactions of Beijing Institute of Technology, 2011, 31(1): 59-63
相似文献/References:
[1]陈岳峰,苗夺谦,李文,等.基于概念的词汇情感倾向识别方法[J].智能系统学报,2011,6(6):489.
 CHEN Yuefeng,MIAO Duoqian,LI Wen,et al.Semantic orientation computing based on concepts[J].CAAI Transactions on Intelligent Systems,2011,6():489.
[2]郭伦众,宋振明.一种基于最大满矩阵生成概念格的算法[J].智能系统学报,2015,10(6):838.[doi:10.11992/tis.201507063]
 GUO Lunzhong,SONG Zhenming.A novel concept-lattice acquisition approach based on the greatest full matrix of formal context[J].CAAI Transactions on Intelligent Systems,2015,10():838.[doi:10.11992/tis.201507063]
[3]胡小康,王俊红.基于相容模糊概念的规则提取方法[J].智能系统学报,2016,11(3):352.[doi:10.11992/tis.201603043]
 HU Xiaokang,WANG Junhong.Research on rule extraction method based on compatibility fuzzy concept[J].CAAI Transactions on Intelligent Systems,2016,11():352.[doi:10.11992/tis.201603043]
[4]石慧,何苗,魏玲.基于不可约元下集格的概念获取[J].智能系统学报,2014,9(2):244.[doi:10.3969/j.issn.1673-4785.201307019]
 SHI Hui,HE Miao,WEI Ling.Concept acquisition based on the down-set lattice of irreducible elements[J].CAAI Transactions on Intelligent Systems,2014,9():244.[doi:10.3969/j.issn.1673-4785.201307019]
[5]温云霞,王俊红.横向拆分形势背景下的快速规则提取方法[J].智能系统学报,2016,11(4):526.[doi:10.11992/tis.201606008]
 WEN Yunxia,WANG Junhong.Research on a fast method for extracting rules based on horizontal splitting[J].CAAI Transactions on Intelligent Systems,2016,11():526.[doi:10.11992/tis.201606008]
[6]毛华,史明.利用二元拟阵Kn图的一种建格方法[J].智能系统学报,2017,12(3):333.[doi:10.11992/tis.201704022]
 MAO Hua,SHI Ming.A constructive method of lattice using the Kn diagram of binary matroid[J].CAAI Transactions on Intelligent Systems,2017,12():333.[doi:10.11992/tis.201704022]
[7]窦林立,展正然.利用二部图生成概念格[J].智能系统学报,2018,13(5):687.[doi:10.11992/tis.201703026]
 DOU Linli,ZHAN Zhengran.Constructing concept lattice using bipartite graph[J].CAAI Transactions on Intelligent Systems,2018,13():687.[doi:10.11992/tis.201703026]
[8]张晓鹤,米据生,李美争.粒协调决策形式背景的属性约简与规则融合[J].智能系统学报,2019,14(6):1138.[doi:10.11992/tis.201905050]
 ZHANG Xiaohe,MI Jusheng,LI Meizheng.Attribute reduction and rule fusion in granular consistent formal decision contexts[J].CAAI Transactions on Intelligent Systems,2019,14():1138.[doi:10.11992/tis.201905050]
[9]毛华,武秀.三支概念的一种构建方法[J].智能系统学报,2020,15(3):514.[doi:10.11992/tis.201904022]
 MAO Hua,WU Xiu.A new method for constructing three-way concept[J].CAAI Transactions on Intelligent Systems,2020,15():514.[doi:10.11992/tis.201904022]
[10]崔铁军,李莎莎.人和人工智能系统的概念形成过程研究[J].智能系统学报,2022,17(5):1012.[doi:10.11992/tis.202104002]
 CUI Tiejun,LI Shasha.Concept formation process of human and artificial intelligence systems[J].CAAI Transactions on Intelligent Systems,2022,17():1012.[doi:10.11992/tis.202104002]
[11]毛华,刘祎超.基于权值最大圈的概念格构造算法[J].智能系统学报,2016,11(4):519.[doi:10.11992/tis.201606006]
 MAO Hua,LIU Yichao.An algorithm for concept lattice construction based on maximum cycles of weight values[J].CAAI Transactions on Intelligent Systems,2016,11():519.[doi:10.11992/tis.201606006]

备注/Memo

收稿日期:2020-06-24。
基金项目:国家自然科学基金项目(12071131,62076088)
作者简介:张晓鹤,博士研究生,主要研究方向为概念格、关联规则挖掘;陈德刚,教授,博士生导师,主要研究方向为机器学习、数据挖掘。完成自然科学基金面上项目3项、数学天元基金1项,参加973课题1项。发表学术论文150余篇;米据生,教授,博士生导师,主要研究方向为粗糙集、粒计算、概念格、数据挖掘与近似推理。主持国家自然科学基金项目3项,教育部博士点基金项目1项。获得省级自然科学奖3项,发表学术论文130余篇
通讯作者:陈德刚.E-mail:zxhzxh93@126.com

更新日期/Last Update: 2020-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com