[1]王丽娟,丁世飞.一种基于ELM-AE特征表示的谱聚类算法[J].智能系统学报,2021,16(3):560-566.[doi:10.11992/tis.202005021]
 WANG Lijuan,DING Shifei.A spectral clustering algorithm based on ELM-AE feature representation[J].CAAI Transactions on Intelligent Systems,2021,16(3):560-566.[doi:10.11992/tis.202005021]
点击复制

一种基于ELM-AE特征表示的谱聚类算法

参考文献/References:
[1] BERKHIN P. A survey of clustering data mining techniques[M]//KOGAN J, NICHOLAS C, TEBOULLE M. Grouping Multidimensional Data. Berlin, Heidelberg:Springer, 2006:25-71.
[2] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61
SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of software, 2008, 19(1):48-61
[3] 刘兵. Web数据挖掘[M]. 俞勇, 薛贵荣, 韩定一, 译. 北京:清华大学出版社, 2011.
[4] WU Junjie, LIU Hongfu, XIONG Hui, et al. K-means-based consensus clustering:a unified view[J]. IEEE transactions on knowledge and data engineering, 2015, 27(1):155-169.
[5] WANG Yangtao, CHEN Lihui. Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources[J]. Expert systems with applications, 2017, 72:457-466.
[6] VAN LUXBURG U. A tutorial on spectral clustering[J]. Statistics and computing, 2007, 17(4):395-416.
[7] JIA Hongjie, DING Shifei, XU Xinzheng, et al. The latest research progress on spectral clustering[J]. Neural computing and applications, 2014, 24(7/8):1477-1486.
[8] 蔡晓妍, 戴冠中, 杨黎斌. 谱聚类算法综述[J]. 计算机科学, 2008, 35(7):14-18
CAI Xiaoyan, DAI Guanzhong, YANG Libin. Survey on spectral clustering algorithms[J]. Computer science, 2008, 35(7):14-18
[9] HUANG Guangbin, CHEN Lei, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE transactions on neural networks, 2006, 17(4):879-892.
[10] ZHANG Rui, LAN Yuan, HUANG Guangbin, et al. Universal approximation of extreme learning machine with adaptive growth of hidden nodes[J]. IEEE transactions on neural networks and learning systems, 2012, 23(2):365-371.
[11] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2012, 42(2):513-529.
[12] DA SILVA B L S, INABA F K, SALLES E O T, et al. Outlier Robust Extreme Machine Learning for multi-target regression[J]. Expert systems with applications, 2020, 140:112877.
[13] ZENG Yijie, LI Yue, CHEN Jichao, et al. ELM embedded discriminative dictionary learning for image classification[J]. Neural networks, 2020, 123:331-342.
[14] WU Chao, LI Yaqian, ZHAO Zhibiao, et al. Extreme learning machine with multi-structure and auto encoding receptive fields for image classification[J]. Multidimensional systems and signal processing, 2020, 31(4):1277-1298.
[15] BARTLETT P L. The sample complexity of pattern classification with neural networks:the size of the weights is more important than the size of the network[J]. IEEE transactions on information theory, 1998, 44(2):525-536.
[16] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[17] BENGIO Y, YAO Li, ALAIN G, et al. Generalized denoising auto-encoders as generative models[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2013:899-907.
[18] BALDI P. Autoencoders, unsupervised learning and deep architectures[C]//Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning workshop. Washington, USA:JMLR. org, 2011:37-50.
[19] 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1):203-230
YUAN Feiniu, ZHANG Lin, SHI Jinting, et al. Theories and applications of auto-encoder neural networks:a literature survey[J]. Chinese journal of computers, 2019, 42(1):203-230
[20] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of machine learning research, 2010, 11(12):3371-3408.
[21] 刘帅师, 程曦, 郭文燕, 等. 深度学习方法研究新进展[J]. 智能系统学报, 2016, 11(5):567-577
LIU Shuaishi, CHENG Xi, GUO Wenyan, et al. Progress report on new research in deep learning[J]. CAAI Transactions on intelligent systems, 2016, 11(5):567-577
[22] 李建元, 周脚根, 关佶红, 等. 谱图聚类算法研究进展[J]. 智能系统学报, 2011, 6(5):405-414
LI Jianyuan, ZHOU Jiaogen, GUAN Jihong, et al. A survey of clustering algorithms based on spectra of graphs[J]. CAAI transactions on intelligent systems, 2011, 6(5):405-414
[23] FILIPPONE M, CAMASTRA F, MASULLI F, et al. A survey of kernel and spectral methods for clustering[J]. Pattern recognition, 2008, 41(1):176-190.
[24] NG A Y, JORDAN M I, WEISS Y. On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, British Columbia, Canada:MIT Press, 2001:849-856.
[25] KASUN L L C, ZHOU H, HUANG G B, et al. Representational learning with extreme learning machine for big data[J]. IEEE intelligent systems, 2013, 28(6):31-34.
[26] DING Shifei, ZHANG Nan, ZHANG Jian, et al. Unsupervised extreme learning machine with representational features[J]. International journal of machine learning and cybernetics, 2017, 8(2):587-595.
相似文献/References:
[1]汪? 中,刘贵全,陈恩红.基于模糊K-harmonic means的谱聚类算法[J].智能系统学报,2009,4(2):95.
 WANG Zhong,LIU Gui-quan,CHEN En-hong.A spectral clustering algorithm based on fuzzy Kharmonic means[J].CAAI Transactions on Intelligent Systems,2009,4():95.
[2]张伟伟,薄 华,王晓峰.多特征-谱聚类的SAR图像溢油分割[J].智能系统学报,2010,5(6):551.
 ZHANG Wei-wei,BO Hua,WANG Xiao-feng.SAR oil spill image segmentationbased on a multispectral clustering algorithm[J].CAAI Transactions on Intelligent Systems,2010,5():551.
[3]辛雨璇,闫子飞.基于手绘草图的图像检索技术研究进展[J].智能系统学报,2015,10(2):167.[doi:10.3969/j.issn.1673-4785.201401045]
 XIN Yuxuan,YAN Zifei.Research progress of image retrieval based on hand-drawn sketches[J].CAAI Transactions on Intelligent Systems,2015,10():167.[doi:10.3969/j.issn.1673-4785.201401045]
[4]李海林,梁叶.分段聚合近似和数值导数的动态时间弯曲方法[J].智能系统学报,2016,11(2):249.[doi:10.11992/tis.201507064]
 LI Hailin,LIANG Ye.Dynamic time warping based on piecewise aggregate approximation and data derivatives[J].CAAI Transactions on Intelligent Systems,2016,11():249.[doi:10.11992/tis.201507064]
[5]林大华,杨利锋,邓振云,等.稀疏样本自表达子空间聚类算法[J].智能系统学报,2016,11(5):696.[doi:10.11992/tis.201601005]
 LIN Dahua,YANG Lifeng,DENG Zhenyun,et al.Sparse sample self-representation for subspace clustering[J].CAAI Transactions on Intelligent Systems,2016,11():696.[doi:10.11992/tis.201601005]
[6]赵晓晓,周治平.结合稀疏表示与约束传递的半监督谱聚类算法[J].智能系统学报,2018,13(5):855.[doi:10.11992/tis.201703013]
 ZHAO Xiaoxiao,ZHOU Zhiping.A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J].CAAI Transactions on Intelligent Systems,2018,13():855.[doi:10.11992/tis.201703013]
[7]储德润,周治平.公理化模糊共享近邻自适应谱聚类算法[J].智能系统学报,2019,14(5):897.[doi:10.11992/tis.201810002]
 CHU Derun,ZHOU Zhiping.Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory[J].CAAI Transactions on Intelligent Systems,2019,14():897.[doi:10.11992/tis.201810002]
[8]王一宾,李田力,程玉胜.结合谱聚类的标记分布学习[J].智能系统学报,2019,14(5):966.[doi:10.11992/tis.201809019]
 WANG Yibin,LI Tianli,CHENG Yusheng.Label distribution learning based on spectral clustering[J].CAAI Transactions on Intelligent Systems,2019,14():966.[doi:10.11992/tis.201809019]
[9]储德润,周治平.加权PageRank改进地标表示的自编码谱聚类算法[J].智能系统学报,2020,15(2):302.[doi:10.11992/tis.201904021]
 CHU Derun,ZHOU Zhiping.An autoencoder spectral clustering algorithm for improving landmark representation by weighted PageRank[J].CAAI Transactions on Intelligent Systems,2020,15():302.[doi:10.11992/tis.201904021]
[10]刘金平,周嘉铭,贺俊宾,等.面向不均衡数据的融合谱聚类的自适应过采样法[J].智能系统学报,2020,15(4):732.[doi:10.11992/tis.201909062]
 LIU Jinping,ZHOU Jiaming,HE Junbin,et al.Spectral clustering-fused adaptive synthetic oversampling approach for imbalanced data processing[J].CAAI Transactions on Intelligent Systems,2020,15():732.[doi:10.11992/tis.201909062]

备注/Memo

收稿日期:2020-05-17。
基金项目:国家自然科学基金项目(61672522,61976216);江苏省高校哲学社会科学研究项目(2019SJA1013);江苏高校 “青蓝工程”
作者简介:王丽娟,副教授,博士研究生,CCF会员,主要研究方向为机器学习、聚类分析;丁世飞,教授,博士生导师,博士,CCF杰出会员,第八届吴文俊人工智能科学技术奖获得者,主要研究方向为人工智能与模式识别,机器学习与数据挖掘。主持国家重点基础研究计划课题1项、国家自然科学基金面上项目3项。出版专著5部,发表学术论文200余篇
通讯作者:丁世飞.E-mail:dingsf@cumt.edu.cn

更新日期/Last Update: 2021-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com