[1]潘家辉,何志鹏,李自娜,等.多模态情绪识别研究综述[J].智能系统学报,2020,15(4):633-645.[doi:10.11992/tis.202001032]
 PAN Jiahui,HE Zhipeng,LI Zina,et al.A review of multimodal emotion recognition[J].CAAI Transactions on Intelligent Systems,2020,15(4):633-645.[doi:10.11992/tis.202001032]
点击复制

多模态情绪识别研究综述

参考文献/References:
[1] PICARD R W, HEALEY J. Affective wearables[J]. Personal technologies, 1997, 1(4): 231-240.
[2] PAN J, XIE Q, HUANG H, et al. Emotion-related consciousness detection in patients with disorders of consciousness through an EEG-Based BCI system[J]. Frontiers in human neuroence, 2018, 12: 198-209.
[3] HUANG H, XIE Q, PAN J, et al. An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness[J]. IEEE transactions on affective computing, 2019, 99: 1-10.
[4] WANG S, PHILLIPS P, DONG Z, et al. Intelligent facial emotion recognition based on stationary wavelet entropy and Jaya algorithm[J]. Neurocomputing, 2018, 272: 668-676.
[5] WANG W, WU J. Notice of retraction emotion recognition based on CSO&SVM in e-learning[C]//Poceedings of the 2011 Seventh International Conference on Natural Computation. Shanghai, China, 2011: 566-570.
[6] LIU W, QIAN J, YAO Z, et al. Convolutional two-stream network using multi-facial feature fusion for driver fatigue detection[J]. Future internet, 2019, 11(5): 115.
[7] BORIL H, OMID SADJADI S, KLEINSCHMIDT T, et al. Analysis and detection of cognitive load and frustration in drivers’ speech[J]. Proceedings of interspeech, 2010: 502-505.
[8] 陆怡菲. 基于脑电信号和眼动信号融合的多模态情绪识别研究[D]. 上海: 上海交通大学, 2017.
LU Yifei. Research on multi-modal emotion recognition based on eeg and eye movement signal fusion[D]. Shanghai: Shanghai Jiaotong University, 2017.
[9] LIU Z, WU M, TAN G, et al. Speech emotion recognition based on feature selection and extreme learning machine decision tree[J]. Neurocomputing, 2018, 10: 271-280.
[10] LIU Z, WU M, CAO W, et al. A facial expression emotion recognition based human-robot interaction system[J]. Journal of automation: english version, 2017, 4(4): 668-676.
[11] LIU Z, PAN F, WU M, et al. A multimodal emotional communication based humans-robots interaction system[C]//Poceedings of the Control Conference. Chengdu, China, 2016: 6363-6368.
[12] CHEN S, JIN Q. Multi-modal conditional attention fusion for dimensional emotion prediction[C]//Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam, the Netherlands, 2016: 571-575.
[13] CHEN S, LI X, JIN Q, et al. Video emotion recognition in the wild based on fusion of multimodal features[C]// Proceedings of the 18th ACM International Conference on Mmultimodal Interaction. Tokyo, Japan, 2016: 494-500.
[14] ZHANG X, SHEN J, DIN Z U, et al. Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble[J]. IEEE journal of biomedical and health informatics, 2019, 23(6): 2265-2275.
[15] ZONG Y, ZHENG W, HUANG X, et al. Emotion recognition in the wild via sparse transductive transfer linear discriminant analysis[J]. Journal on multimodal user interfaces, 2016, 10(2): 163-172.
[16] ZHANG T, ZHENG W, CUI Z, et al. Spatial-temporal recurrent neural network for emotion recognition[J]. IEEE transactions on systems, man, and cybernetics, 2019, 49(3): 839-847.
[17] ZHENG W, LIU W, LU Y, et al. Emotionmeter: A multimodal framework for recognizing human emotions[J]. IEEE transactions on cybernetics, 2018, 49(3): 1110-1122.
[18] ZHENG W, ZHU J, LU B. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE transactions on affective computing, 2019, 10(3): 417-429.
[19] YAN X, ZHENG W, LIU W, et al. Investigating Gender differences of brain areas in emotion recognition using LSTM neural network[C]//Poceedings of the International Conference on Neural Information Processing. Guangzhou, China, 2017: 820-829.
[20] LI J, QIU S, SHEN Y, et al. Multisource transfer learning for cross-subject EEG emotion recognition[J]. IEEE transactions on systems, man, and cybernetics, 2019, 50(7): 1-13.
[21] DU Changde, DU Changying, LI J, et al. Semi-supervised bayesian deep multi-modal emotion recognition[J]. arXiv preprint arXiv: 170407548, 2017.
[22] 程静. 基本情感生理信号的非线性特征提取研究[D]. 重庆: 西南大学, 2015.
CHENG Jing. Research on nonlinear feature extraction of basic emotional physiological signals[D]. Chongqing: Southwest University, 2015.
[23] 温万惠. 基于生理信号的情感识别方法研究[D]. 重庆: 西南大学, 2010.
WEN Wanhui. Research on emotion recognition method based on physiological signals[D]. Chongqing, Southwest university, 2010.
[24] PICARD R W. Affective computing: challenges[J]. International journal of human-computer studies, 2003, 59(1-2): 55-64.
[25] EKMAN P E, DAVIDSON R J. The nature of emotion: fundamental questions[M]. Oxford: Oxford university press, 1994.
[26] 高庆吉, 赵志华, 徐达, 等. 语音情感识别研究综述[J]. 智能系统学报, 2020, 15(1): 1-13
GAO Qingji, ZHAO Zhihua, XU Da, et al. Review on speech emotion recognition research[J]. CAAI transactions on intelligent systems, 2020, 15(1): 1-13
[27] JOHNSTON V S. Why we feel: The science of human emotions[M]. New York: Perseus publishing, 1999.
[28] RUSSELL J A. A circumplex model of affect[J]. Journal of personality and social psychology, 1980, 39(6): 1161.
[29] MEHRABIAN A. Basic dimensions for a general psychological theory: Implications for personality, social, environmental, and developmental studies[M]. Cambridge: Oelgeschlager Gunn & Hain Cambridge, MA, 1980.
[30] ORTONY A, CLORE G L, COLLINS A. The cognitive structure of emotion[J]. Contemporary sociology, 1988, 18(6): 2147-2153.
[31] PICARD R W. Affective computing[M]. Cambridge: MIT press, 2000.
[32] VAN KESTEREN A, OPDEN AKKER R, POEL M, et al. Simulation of emotions of agents in virtual environments using neural networks[J]. Learning to behave: internalising knowledge, 2000: 137-147.
[33] PLUTCHIK R. Emotions and life: Perspectives from psychology, biology, and evolution[M]. Washington: American Psychological Association, 2003.
[34] IZARD. Human emotions[M]. Berlin: Springer Science & Business Media, 2013.
[35] ZHUANG N, ZENG Y, YANG K, et al. Investigating patterns for self-induced emotion recognition from EEG signals[J]. Sensors, 2018, 18(3): 841.
[36] IACOVIELLO D, PETRACCA A, SPEZIALETTI M, et al. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions[J]. Computer methods and programs in biomedicine, 2015, 122(3): 293-303.
[37] RIZZOLATTI G, CRAIGHERO L. The mirror-neuron system[J]. Annu rev neurosci, 2004, 27: 169-192.
[38] LANG P J, BRADLEY M M, CUTHBERT B N. International affective picture system (IAPS): Technical manual and affective ratings[J]. NIMH center for the study of emotion and attention, 1997, 1: 39-58.
[39] BRADLEY M, LANG P J. The International affective digitized sounds (IADS)[M]. Rockville: NIMH center, 1999.
[40] KOELSTRA S, MUHL C, SOLEYMANI M, et al. Deap: A database for emotion analysis; using physiological signals[J]. IEEE transactions on affective computing, 2011, 3(1): 18-31.
[41] SOLEYMANI M, LICHTENAUER J, PUN T, et al. A multimodal database for affect recognition and implicit tagging[J]. IEEE transactions on affective computing, 2012, 3(1): 42-55.
[42] MARTIN O, KOTSIA I, MACQ B. The eNTERFACE’05 audio-visual emotion database[C]//Poceedings of the international conference on data engineering workshops IEEE computer society. Atlanta, USA, 2006: 8.
[43] 何俊, 刘跃, 何忠文. 多模态情感识别研究进展[J]. 计算机应用研究, 2018, 35(11): 3201-3205
HE Jun, LIU Yue, HE Zhongwen. Research progress of multimodal emotion recognition[J]. Computer application research, 2018, 35(11): 3201-3205
[44] D’MELLO S K, KORY J. A review and meta-analysis of multimodal affect detection systems[J]. ACM computing surveys (CSUR), 2015, 47(3): 43.
[45] PORIA S, CAMBRIA E, BAJPAI R, et al. A review of affective computing: from unimodal analysis to multimodal fusion[J]. Information fusion, 2017, 37: 98-125.
[46] 黄泳锐, 杨健豪, 廖鹏凯, 等. 结合人脸图像和脑电的情绪识别技术[J]. 计算机系统应用, 2018, 27(2): 9-15
HUANG Yongrui, YANG Jianhao, LIAO Pengkai, et al. Emotion recognition technology combining face image and EEG[J]. Computer system application, 2018, 27(2): 9-15
[47] 孙皓莹, 蒋静坪. 基于参数估计的多传感器数据融合[J]. 传感器技术, 1995, 6: 32-36
SUN Haoying, JIANG Jingping. Multi-sensor data fusion based on parameter estimation[J]. Sensor technology, 1995, 6: 32-36
[48] MINOTTO V P, JUNG C R, LEE B. Multimodal multi-channel on-line speaker diarization using sensor fusion through SVM[J]. IEEE transactions on multimedia, 2015, 17(10): 1694-1705.
[49] 张保梅. 数据级与特征级上的数据融合方法研究[D]. 兰州: 兰州理工大学, 2005.
ZHANG Baomei. Research on data fusion methods at data level and feature level[D]. Lanzhou: Lanzhou University of Technology, 2005.
[50] PORIA S, CHATURVEDI I, CAMBRIA E, et al. Convolutional MKL based multimodal emotion recognition and sentiment analysis[C]//Poceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM). Barcelona, Spain, 2016: 439-448.
[51] HAGHIGHAT M, ABDELMOTTALEB M, ALHALABI W. Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition[J]. IEEE transactions on information forensics and security, 2016, 11(9): 1984-1996.
[52] EMERICH S, LUPU E, APATEAN A. Bimodal approach in emotion recognition using speech and facial expressions[C]//Poceedings of the 2009 International Symposium on Signals, Circuits and Systems. Iasi, Romania, 2009: 1-4.
[53] YAN J, ZHENG W, XU Q, et al. Sparse kernel reduced-rank regression for bimodal emotion recognition from facial expression and speech[J]. IEEE transactions on multimedia, 2016, 18(7): 1319-1329.
[54] MANSOORIZADEH M, CHARKARI N M. Multimodal information fusion application to human emotion recognition from face and speech[J]. Multimedia tools and applications, 2010, 49(2): 277-297.
[55] ZHALEHPOUR S, ONDER O, AKHTAR Z, et al. BAUM-1: A spontaneous audio-visual face database of affective and mental states[J]. IEEE transactions on affective computing, 2016, 8(3): 300-313.
[56] WU P, LIU H, LI X, et al. A novel lip descriptor for audio-visual keyword spotting based on adaptive decision fusion[J]. IEEE transactions on multimedia, 2016, 18(3): 326-338.
[57] GUNES H, PICCARDI M. Bi-modal emotion recognition from expressive face and body gestures[J]. Journal of network and computer applications, 2007, 30(4): 1334-1345.
[58] KOELSTRA S, PATRAS I. Fusion of facial expressions and EEG for implicit affective tagging[J]. Image and vision computing, 2013, 31(2): 164-174.
[59] SOLEYMANI M, ASGHARIESFEDEN S, PANTIC M, et al. Continuous emotion detection using EEG signals and facial expressions[C]//Poceedings of the 2014 IEEE International Conference on Multimedia and Expo. Chengdu, China, 2014: 1-6.
[60] PONTI JR M P. Combining classifiers: from the creation of ensembles to the decision fusion[C]//Poceedings of the 2011 24th SIBGRAPI Conference on Graphics, Patterns, and Images Tutorials. Alagoas, Brazil, 2011: 1-10.
[61] FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Poceedings of the 1996 International Conference on Machine Learning. Bari, Italy, 1996: 148-156.
[62] CHANG Z, LIAO X, LIU Y, et al. Research of decision fusion for multi-source remote-sensing satellite information based on SVMs and DS evidence theory[C]//Poceedings of the Fourth International Workshop on Advanced Computational Intelligence. Wuhan, China, 2011: 416-420.
[63] NEFIAN A V, LIANG L, PI X, et al. Dynamic bayesian networks for audio-visual speech recognition[J]. EURASIP journal on advances in signal processing, 2002, 2002(11): 783042.
[64] MUROFUSHI T, SUGENO M. An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy sets and systems, 1989, 29(2): 201-227.
[65] HUANG Y, YANG J, LIU S, et al. Combining facial expressions and electroencephalography to enhance emotion recognition[J]. Future internet, 2019, 11(5): 105.
[66] LU Y, ZHENG W, LI B, et al. Combining eye movements and EEG to enhance emotion recognition[C]//Poceedings of the Twenty-fourth International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015: 1170-1176.
[67] ZHANG S, ZHANG S, HUANG T, et al. Learning affective features with a hybrid deep model for audio-visual emotion recognition[J]. IEEE transactions on circuits & systems for video technology, 2017, 28(10): 1-1.
[68] METALLINOU A, WOLLMER M, KATSAMANIS A, et al. Context-sensitive learning for enhanced audiovisual emotion classification[J]. IEEE transactions on affective computing, 2012, 3(2): 184-198.
[69] MCGURK H, MACDONALD J. Hearing lips and seeing voices[J]. Nature, 1976, 264(5588): 746.
[70] NGUYEN D, NGUYEN K, SRIDHARAN S, et al. Deep spatio-temporal feature fusion with compact bilinear pooling for multimodal emotion recognition[J]. Computer vision and image understanding, 2018, 174: 33-42.
[71] DOBRI?EK S, GAJ?EK R, MIHELI? F, et al. Towards efficient multi-modal emotion recognition[J]. International journal of advanced robotic systems, 2013, 10(1): 53.
[72] ZHANG S, ZHANG S, HUANG T, et al. Learning affective features with a hybrid deep model for audio-visual emotion recognition[J]. IEEE transactions on circuits and systems for video technology, 2017, 28(10): 3030-3043.
[73] TANG H, LIU W, ZHENG W, et al. Multimodal emotion recognition using deep neural networks[C]//Poceedings of the International Conference on Neural Information Processing. Guangzhou, China, 2017: 811-819.
[74] YIN Z, ZHAO M, WANG Y, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer methods and programs in biomedicine, 2017, 140: 93-110.
[75] SOLEYMANI M, PANTIC M, PUN T. Multimodal emotion recognition in response to videos[J]. IEEE transactions on affective computing, 2011, 3(2): 211-223.
[76] JAMES W. What is an Emotion?[J]. Mind, 1884, 9(34): 188-205.
[77] COWIE R, DOUGLASCOWIE E. Automatic statistical analysis of the signal and prosodic signs of emotion in speech[C]//Poceedings of the Fourth International Conference on Spoken Language Processing ICSLP’96. Philadelphia, USA, 1996: 1989-1992.
[78] SCHERER, KLAUS. Adding the affective dimension: a new look in speech analysis and synthesis[C]//Poceedings of the ICSLP. Dayton, USA, 1996.
[79] PANTIC M, ROTHKRANTZ L J. Automatic analysis of facial expressions: the state of the art[J]. IEEE transactions on pattern analysis & machine intelligence, 2000, 12: 1424-1445.
[80] IOANNOU S V, RAOUZAIOU A T, TZOUVARAS V A, et al. Emotion recognition through facial expression analysis based on a neurofuzzy network[J]. Neural networks, 2005, 18(4): 423-435.
[81] CASTELLANO G, VILLALBA S D, CAMURRI A. Recognising human emotions from body movement and gesture dynamics[C]//Poceedings of the International Conference on Affective Computing and Intelligent Interaction. Lisbon, Portugal, 2007: 71-82.
[82] CAMURRI A, LAGERL?F I, VOLPE G. Recognizing emotion from dance movement: comparison of spectator recognition and automated techniques[J]. International journal of human-computer studies, 2003, 59(1-2): 213-225.
[83] KALIOUBY, ROBINSON P. Generalization of a vision-based computational model of mind-reading[C]//Poceedings of the International Conference on Affective Computing and Intelligent Interaction. Beijing, China, 2005: 582-589.
[84] CASTELLANO G, KESSOUS L, CARIDAKIS G. Emotion recognition through multiple modalities: face, body gesture, speech[M]. Berlin: Springer-verlag. 2008: 92-103.
[85] SCHERER K R, ELLGRING H. Multimodal expression of emotion: affect programs or componential appraisal patterns?[J]. Emotion, 2007, 7(1): 158-171.
[86] PETRANTONAKIS P C, HADJILEONTIADIS L J. A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition[J]. IEEE transactions on information technology in biomedicine, 2011, 15(5): 737-746.
[87] LIN Y, WANG C, JUNG T, et al. EEG-based emotion recognition in music listening[J]. IEEE transactions on biomedical engineering, 2010, 57(7): 1798-1806.
[88] DAVIDSON R J, FOX N A. Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants[J]. Science, 1982, 218(4578): 1235-1237.
[89] TURETSKY B I, KOHLER C G, INDERSMITTEN T, et al. Facial emotion recognition in schizophrenia: when and why does it go awry?[J]. Schizophrenia research, 2007, 94(1-3): 253-263.
[90] HAJCAK G, MACNAMARA A, OLVET D M. Event-related potentials, emotion, and emotion regulation: an integrative review[J]. Developmental neuropsychology, 2010, 35(2): 129-155.
[91] ALARCAO S M, FONSECA M J. Emotions recognition using EEG signals: A survey[J]. IEEE transactions on affective computing, 2019, 10(3): 374-393.
[92] CHANEL G, KIERKELS J J M, SOLEYMANI M, et al. Short-term emotion assessment in a recall paradigm[J]. International journal of human-computer studies, 2009, 67(8): 607-627.
[93] CHEN S, ZHEN G, WANG S. Emotion recognition from peripheral physiological signals enhanced by EEG[C]//Poceedings of the IEEE International Conference on Acoustics. Shanghai, China, 2016.
[94] EKMAN P. An argument for basic emotions[J]. Cognition & emotion, 1992, 6(3-4): 169-200.
[95] HUANG Y, YANG J, LIAO P, et al. Fusion of facial expressions and EEG for multimodal emotion recognition[J]. Computational intelligence and neuroscience, 2017: 2107451.
[96] KAPOOR A, BURLESON W, PICARD R W. Automatic prediction of frustration[J]. International journal of human-computer studies, 2007, 65(8): 724-736.
[97] LIU W, ZHENG W, LU B. Emotion recognition using multimodal deep learning[M]. Berlin: Springer International Publishing, 2016: 521-529.
[98] LüHMANN A V, WABNITZ H, SANDER T, et al. M3BA: A mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS based hybrid BCI and monitoring[J]. IEEE transactions on biomedical engineering, 2016, 64(6): 1199-1210.
[99] AREVALILLO-HERRáEZ M, COBOS M, ROGER S, et al. Combining inter-subject modeling with a subject-based data transformation to improve affect recognition from EEG signals[J]. Sensors, 2019, 19(13): 2999.
[100] 郭琛, 高小榕. 用于眼动检测和脑电采集的数据同步方法[C]// 第九届全国信息获取与处理学术会议论文集Ⅱ. 丹东, 中国. 2011.
GUO Chen, GAO Xiaorong. A data synchronization method for eye movement detection and eeg acquisition[C]// Proceedings of the 9th National Conference on Information Acquisition and Processing Ⅱ. Dandong, China. 2011.
[101] 赵亮. 多模态数据融合算法研究[D]. 大连: 大连理工大学, 2018.
ZHAO Liang. Multi-modal data fusion algorithm research[D]. Dalian: Dalian University of Technology, 2018.
[102] ZHENG W, ZHU J, PENG Y, et al. EEG-based emotion classification using deep belief networks[C]//Poceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME). Chengdu, China, 2014: 1-6.
[103] MOWER E, MATARIC M J, NARAYANAN S. A framework for automatic human emotion classification using emotion profiles[J]. IEEE transactions on audio, speech, and language processing, 2010, 19(5): 1057-1070.
相似文献/References:
[1]李景聪,潘伟健,林镇远,等.采用多路图注意力网络的情绪脑电信号识别方法[J].智能系统学报,2022,17(3):531.[doi:10.11992/tis.202107003]
 LI Jingcong,PAN Weijian,LIN Zhenyuan,et al.Emotional EEG signal recognition method using multi-path graph attention network[J].CAAI Transactions on Intelligent Systems,2022,17():531.[doi:10.11992/tis.202107003]

备注/Memo

收稿日期:2020-01-30。
基金项目:国家自然科学基金面上项目(61876067);广东省自然科学基金面上项目(2019A1515011375);广州市科技计划项目重点领域研发计划项目(202007030005)
作者简介:潘家辉,副教授,博士,广东医学会数字医学分会常务委员,主要研究方向为机器学习、脑机接口、模式识别与智能系统。广州市珠江科技新星,华南师范大学教学名师,曾两次获得广东省科学技术奖一等奖、中华医学科技奖三等奖等。主持国家自然科学基金项目2项、广东省自然科学基金项目2项、广州市重点研发领域项目1项、广州市科技创新人才项目1项。发表学术论文80余篇;何志鹏,硕士研究生,主要研究方向为情感计算、混合脑机接口;李自娜,硕士研究生,主要研究方向为机器学习、情感识别
通讯作者:潘家辉.E-mail:panjh82@qq.com

更新日期/Last Update: 2020-07-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com