[1]赵振兵,江爱雪,戚银城,等.嵌入遮挡关系模块的SSD模型的输电线路图像金具检测[J].智能系统学报,2020,15(4):656-662.[doi:10.11992/tis.202001008]
 ZHAO Zhenbing,JIANG Aixue,QI Yincheng,et al.Fittings detection in transmission line images with SSD model embedded occlusion relation module[J].CAAI Transactions on Intelligent Systems,2020,15(4):656-662.[doi:10.11992/tis.202001008]
点击复制

嵌入遮挡关系模块的SSD模型的输电线路图像金具检测

参考文献/References:
[1] 赵强, 左石. 输电线路金具理论与应用[M]. 北京: 中国电力出版社, 2013: 2-12.
[2] 傅博, 姜勇, 王洪光, 等. 输电线路巡检图像智能诊断系统[J]. 智能系统学报, 2016, 11(1): 70-77
FU Bo, JIANG Yong, WANG Hongguang, et al. Intelligent diagnosis system for patrol check images of power transmission lines[J]. CAAI transactions on intelligent systems, 2016, 11(1): 70-77
[3] 王身丽, 黄力, 侯金华, 等. 基于最大熵的复合绝缘子表面水珠图像分割算法研究[J]. 通信电源技术, 2018, 35(1): 48-50
WANG Shenli, HUANG Li, HOU Jinhua, et al. Study on segmentation method of water drops image on composite insulator based on maximum entropy[J]. Telecom power technology, 2018, 35(1): 48-50
[4] 金立军, 胡娟, 闫书佳. 基于图像的高压输电线间隔棒故障诊断方法[J]. 高电压技术, 2013, 39(5): 1040-1045
JIN Lijun, HU Juan, YAN Shujia. Method of spacer fault diagnose on transmission line based on image procession[J]. High voltage engineering, 2013, 39(5): 1040-1045
[5] 陈晓娟, 吴英石, 赵亮. 基于随机Hough变换的OPGW防震锤识别[J]. 黑龙江电力, 2010, 32(1): 1-2
CHEN Xiaojuan, WU Yingshi, ZHAO Liang. Identification of OPGW vibration damper based on random Hough transformation[J]. Heilongjiang electric power, 2010, 32(1): 1-2
[6] 江慎旺, 许廷发, 张增, 等. 基于无人机的输电网故障跳线联板识别[J]. 液晶与显示, 2016, 31(12): 1149-1155
JIANG Shenwang, XU Tingfa, ZHANG Zeng. Recognition algorithm for fault jumper connection plate of transmission network based on UAV[J]. Chinese journal of liquid crystals and displays, 2016, 31(12): 1149-1155
[7] 翟永杰, 王迪, 赵振兵. 基于目标建议与结构搜索的绝缘子识别方法[J]. 华北电力大学学报, 2016, 43(4): 66-71
ZHAI Yongjie, WANG Di, ZHAO Zhenbing. Recognition method of insulator based on object proposals and structure research[J]. Journal of North China Electric Power University, 2016, 43(4): 66-71
[8] 王森. 输电线路图像上防震锤检测算法研究[D]. 北京: 北京交通大学, 2017: 21-44.
WANG Sen. Research on algorithms of vibration damper detection on power line image[D]. Beijing: Beijing Jiaotong University, 2017: 21-44.
[9] 刘永姣. 输电线路绝缘子视觉跟踪技术应用研究[D]. 成都: 电子科技大学, 2017: 35-45.
LIU Yongjiao. Research on application of visual tracking technology of insulator for transmission line[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 35-45.
[10] 刘召, 张黎明, 耿美晓, 等. 基于改进的Faster R-CNN高压线缆目标检测方法[J]. 智能系统学报, 2019, 14(4): 627-634
LIU Zhao, ZHANG Liming, GENG Meixiao, et al. Object detection of high-voltage cable based on improved Faster R-CNN[J]. CAAI transactions on intelligent systems, 2019, 14(4): 627-634
[11] 汤踊, 韩军, 魏文力, 等. 深度学习在输电线路中部件识别与缺陷检测的研究[J]. 电子测量技术, 2018, 41(6): 60-65
TANG Yong, HAN Jun, WEI Wenli, et al. Research on part recognition and defect detection of transmission line in deep learning[J]. Electronic measurement technology, 2018, 41(6): 60-65
[12] 高强, 廉启旺. 航拍图像中绝缘子目标检测的研究[J]. 电测与仪表, 2019, 56(5): 119-123
GAO Qiang, LIAN Qiwang. Research on target detection of insulator in aerial image[J]. Electrical measurement and instrumentation, 2019, 56(5): 119-123
[13] 赵振兵, 崔雅萍, 戚银城, 等. 基于改进的 R-FCN 航拍巡线图像中的绝缘子检测方法[J]. 计算机科学, 2019, 46(3): 159-163
ZHAO Zhenbing, CUI Yaping, QI Yincheng, et al. Detection method of insulator in aerial inspection image based on modified R-FCN[J]. Computer science, 2019, 46(3): 159-163
[14] 赵文清, 程幸福, 赵振兵, 等. 注意力机制和Faster RCNN相结合的绝缘子识别[J]. 智能系统学报, 2020, 15(1): 92-98
ZHAO Wenqing, CHENG Xingfu, ZHAO Zhenbing, et al. Insulator recognition based on attention mechanism and Faster RCNN[J]. CAAI transactions on intelligent systems, 2020, 15(1): 92-98
[15] 张东, 邱翔, 曹成功, 等. 结合聚合通道和复频域特征的防震锤检测算法[J]. 计算机技术与发展, 2020(2): 1-7
ZHANG Dong, QIU Xiang, CAO Chenggong, et al. Algorithm of vibration damper detection combined with aggregation channel and complex frequency domain features[J]. Computer technology and development, 2020(2): 1-7
[16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on ComputerVision. Amsterdam, Netherlands, 2016: 21-37.
[17] 赵文清, 周震东, 翟永杰. 基于反卷积和特征融合的SSD小目标检测算法[J]. 智能系统学报, 2020, 15(2): 310-316
ZHAO Wenqing, ZHOU Zhendong, ZHAI Yongjie. SSD small target detection algorithm based on deconvolution and feature fusion[J]. CAAI transactions on intelligent systems, 2020, 15(2): 310-316
[18] 伍鹏瑛, 张建明, 彭建, 等. 多层卷积特征的真实场景下行人检测研究[J]. 智能系统学报, 2019, 14(2): 306-315
WU Pengying, ZHANG Jianming, PENG Jian, et al. Research on pedestrian detection based on multi-layer convolution feature in real scene[J]. CAAI transactions on intelligent systems, 2019, 14(2): 306-315
[19] CHEN X, GUPTA A. Spatial memory for context reasoning in object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4086-4096.
[20] MOTTAGHI R, CHEN X, LIU X, et al. The role of context for object detection and semantic segmentation in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 891-898.
[21] LIU Y, WANG R, SHAN S, et al. Structure inference net: object detection using scene-level context and instance-level relationships[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6985-6994.
[22] HU H, GU J, ZhANG Z, et al. Relation networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3588-3597.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Long Beach, USA, 2017: 5998-6008.
[24] 葛园园, 许有疆, 赵帅, 等. 自动驾驶场景下小且密集的交通标志检测[J]. 智能系统学报, 2018, 13(3): 366-372
GE Yuanyuan, XU Youjiang, ZHAO Shuai, et al. Detection of small and dense traffic signs in self-driving scenarios[J]. CAAI transactions on intelligent systems, 2018, 13(3): 366-372
[25] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii Convention Center, USA, 2017: 2881-2890.

备注/Memo

收稿日期:2020-01-06。
基金项目:国家自然科学基金项目(61871182,61773160);北京市自然科学基金项目(4192055);河北省自然科学基金项目(F2020502009);中央高校基本科研业务费专项资金项目(2018MS095,2020YJ006);模式识别国家重点实验室开放课题(201900051);国家留学基金项目(201906735011)
作者简介:赵振兵,副教授,博士,主要研究方向为电力视觉。主持国家自然科学基金等纵向课题10项;获河北省科技进步一等奖1项。以第一完成人获得国家专利授权16项。发表学术论文30余篇,出版专著2部;江爱雪,硕士研究生,主要研究方向为电力目标检测与深度学习;赵文清,教授,博士,主要研究方向为人工智与数据挖掘。发表学术论文50余篇
通讯作者:赵振兵.E-mail:zhaozhenbing@ncepu.edu.cn

更新日期/Last Update: 2020-07-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com