[1]程洪,黄瑞,邱静,等.人机智能技术及系统研究进展综述[J].智能系统学报,2020,15(2):386-398.[doi:10.11992/tis.201912001]
 CHENG Hong,HUANG Rui,QIU Jing,et al.A survey of recent advances in human-robot intelligent systems[J].CAAI Transactions on Intelligent Systems,2020,15(2):386-398.[doi:10.11992/tis.201912001]
点击复制

人机智能技术及系统研究进展综述

参考文献/References:
[1] AMOR H B, NEUMANN G, KAMTHE S, et al. Interaction primitives for human-robot cooperation tasks[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014: 2831-2837.
[2] SASAKI K, EGUCHI Y, SUZUKI K. Step-climbing wheelchair with lever propelled rotary legs[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 6354-6359.
[3] SU Hang, YANG Chenguang, FERRIGNO G, et al. Improved human-robot collaborative control of redundant robot for teleoperated minimally invasive surgery[J]. IEEE robotics and automation letters, 2019, 4(2): 1447-1453.
[4] ROZO L, BRUNO D, CALINON S, et al. Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 1024-1030.
[5] HUANG Rui, CHENG Hong, GUO Hongliang, et al. Learning cooperative primitives with physical human-robot interaction for a human-powered lower exoskeleton[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea, 2016: 5355-5360.
[6] BENDERIUS O, BERGER C, LUNDGREN V M. The best rated human-machine interface design for autonomous vehicles in the 2016 grand cooperative driving challenge[J]. IEEE transactions on intelligent transportation systems, 2018, 19(4): 1302-1307.
[7] STRICKLAND M, FAINEKOS G, AMOR H B. Deep predictive models for collision risk assessment in autonomous driving[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 4685-4692.
[8] 雷永林, 朱一凡, 谭跃进, 等. 模型驱动的复杂人机系统过程建模仿真方法[J]. 系统工程与电子技术, 2016, 38(1): 223-231
LEI Yonglin, ZHU Yifan, TAN Yuejin, et al. Model driven process modeling and simulation of complex man-machine systems[J]. Systems engineering and electronics, 2016, 38(1): 223-231
[9] TRAN H T, CHENG Hong, LIN Xichuan, et al. The relationship between physical human- exoskeleton interaction and dynamic factors: using a learning approach for control applications[J]. Science China information sciences, 2014, 57(12): 1-13.
[10] HADDADIN S, CROFT E. Physical human-robot interaction[M]//SICILIANO B, KHATIB O. Springer Handbook of Robotics. Cham: Springer, 2016.
[11] SHIROTA C, TUCKER M R, LAMBERCY O, et al. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking[C]//Proceedings of 2017 International Conference on Rehabilitation Robotics. London, UK, 2017: 430-434.
[12] MALLAT R, VINCENT B, HUO Weiguang, et al. Human-exoskeleton system dynamics identification using affordable sensors[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 6759-6765.
[13] GHAN J, KAZEROONI H. System identification for the Berkeley Lower Extremity Exoskeleton (BLEEX)[C]//Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando, USA, 2006: 3477-3484.
[14] GHAN J, STEGER R, KAZEROONI H. Control and system identification for the Berkeley Lower Extremity Exoskeleton (BLEEX)[J]. Advanced robotics, 2006, 20(9): 989-1014.
[15] TRAN H J, CHENG Hong, DUONG M K, et al. Fuzzy-based impedance regulation for control of the coupled human-exoskeleton system[C]//Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics. Bali, Indonesia, 2014: 986-992.
[16] DUONG M K, CHENG Hong, TRAN H T, et al. Minimizing human-exoskeleton interaction force using compensation for dynamic uncertainty error with adaptive RBF network[J]. Journal of intelligent & robotic systems, 2016, 82(3-4): 413-433.
[17] TRAN H T, CHENG Hong, RUI Huang, et al. Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton[J]. International journal of social robotics, 2016, 8(1): 103-123.
[18] 王启宁, 郑恩昊, 陈保君, 等. 面向人机融合的智能动力下肢假肢研究现状与挑战[J]. 自动化学报, 2016, 42(12): 1780-1793
WANG Qining, ZHENG Enhao, CHEN Baojun, et al. Recent progress and challenges of robotic lower-limb prostheses for human-robot integration[J]. Acta automatica sinica, 2016, 42(12): 1780-1793
[19] EILENBERG M F, GEYER H, HERR H. Control of a powered ankle-foot prosthesis based on a neuromuscular model[J]. IEEE transactions on neural systems and rehabilitation engineering, 2010, 18(2): 164-173.
[20] WEN Yue, SI J, GAO Xiang, et al. A new powered lower limb prosthesis control framework based on adaptive dynamic programming[J]. IEEE transactions on neural networks and learning systems, 2017, 28(9): 2215-2220.
[21] 俞凯, 陈露, 陈博, 等. 任务型人机对话系统中的认知技术 - 概念、进展及其未来[J]. 计算机学报, 2015, 38(12): 2333-2348
YU Kai, CHEN Lu, CHEN Bo, et al. Cognitive technology in task-oriented dialogue systems: concepts, advances and future[J]. Chinese journal of computers, 2015, 38(12): 2333-2348
[22] WU Huiyue, WANG Yu, QIU Jiali, et al. User-defined gesture interaction for immersive VR shopping applications[J]. Behaviour & information technology, 2018, 38(7): 726-741.
[23] CASTRO-VARGAS J A, ZAPATA-IMPATA B, GIL P, et al. 3DCNN performance in hand gesture recognition applied to robot arm interaction[C]//Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods. Prague, Czech Republic, 2019: 802-806.
[24] KAWAMOTO H, LEE S, KANBE S, et al. Power assist method for HAL-3 using EMG-based feedback controller[C]//Proceedings of 2003 IEEE International Conference on Systems, Man and Cybernetics. Washington, USA, 2003: 1648-1653.
[25] LEE S, SANKAI Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland, 2002: 1499-1504.
[26] HAMAYA M, MATSUBARA T, NODA T, et al. Learning assistive strategies for exoskeleton robots from user-robot physical interaction[J]. Pattern recognition letters, 2017, 99: 67-76.
[27] WANG Can, WU Xinyu, WANG Zhouyang, et al. Implementation of a brain-computer interface on a lower-limb exoskeleton[J]. IEEE access, 2018, 6: 38524-38534.
[28] MA Xunju, LONG Xingguo, YAN Zefeng, et al. Real-time active control of a lower limb exoskeleton based on sEMG[C]//Proceedings of 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Hong Kong, China, 2019: 589-594.
[29] 张毅, 代凌凌, 罗元. 基于SEMG控制的智能轮椅无障碍人机交互系统[J]. 华中科技大学学报(自然科学版), 2011, 39(S2): 264-267, 282
ZHANG Yi, DAI Lingling, LUO Yuan. Information accessibility human-machine interaction system of intelligent wheelchair based on SEMG[J]. Journal of Huazhong University of Science and Technology (nature science edition), 2011, 39(S2): 264-267, 282
[30] CIPRIANI C, ZACCONE F, MICERA S, et al. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction[J]. IEEE transactions on robotics, 2008, 24(1): 170-183.
[31] VASYLKIV Y, NESHATI A, SAKAMOTO Y, et al. Smart home interactions for people with reduced hand mobility using subtle EMG-signal gestures[M]//LAU F, BARTLE-CLAR J A, BLISS G, et al. Improving Usability, Safety and Patient Outcomes with Health Information Technology. Amsterdam: IOS Press, 2019: 436-443.
[32] ZENG Hong, WANG Yanxin, WU Changcheng, et al. Closed-loop hybrid gaze brain-machine interface based robotic arm control with augmented reality feedback[J]. Frontiers in neurorobotics, 2017, 11: 60.
[33] YANG Chenguang, CHANG Sai, LIANG Peidong, et al. Teleoperated robot writing using EMG signals[C]//Proceedings of 2015 IEEE International Conference on Information and Automation. Lijiang, China, 2015: 2264-2269.
[34] 雷煜, 童莉, 李建新, 等. 基于脑功能磁共振影像的视觉信息解读技术[J]. 计算机应用研究, 2013, 30(6): 1611-1616
LEI Yu, TONG Li, LI Jianxin, et al. Functional magnetic resonance imaging “brain reading” of visual information: a review[J]. Application research of computers, 2013, 30(6): 1611-1616
[35] ZOU Chaobin, HUANG Rui, CHENG Hong, et al. Adaptive gait planning for walking assistance lower limb exoskeletons in slope scenarios[C]//Proceedings of 2019 International Conference on Robotics and Automation. Montreal, Canada, 2019: 5083-5089.
[36] CHEN Qiming, CHENG Hong, HUANG Rui, et al. Learning and planning of stair ascent for lower-limb exoskeleton systems[J]. Industrial robot, 2019, 46(3): 421-430.
[37] CHEN Qiming, CHENG Hong, YUE Chunfeng, et al. Dynamic balance gait for walking assistance exoskeleton[J]. Applied bionics and biomechanics, 2018, 2018: 7847014.
[38] DENG Chuanjie, LI Zhijun. Human-guided robotic exoskeleton cooperative walking for climbing stairs[C]//Proceedings of the 2018 3rd International Conference on Advanced Robotics and Mechatronics. Singapore, Singapore, 2018: 60-65.
[39] BORTOLE M, DEL AMA A, ROCON E, et al. A robotic exoskeleton for overground gait rehabilitation[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013: 3356-3361.
[40] UNLUHISARCIKLI O, PIETRUSINSKI M, WEINBERG B, et al. Design and control of a robotic lower extremity exoskeleton for gait rehabilitation[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA, 2011: 4893-4898.
[41] 刘洋, 孙恺. 协作机器人的研究现状与技术发展分析[J]. 北方工业大学学报, 2017, 29(2): 76-85
LIU Yang, SUN Kai. State of the art and future directions of collaborative robot[J]. Journal of North China University of Technology, 2017, 29(2): 76-85
[42] KIMURA H, HORIUCHI T, IKEUCHI K. Task-model based human robot cooperation using vision[C]//Proceedings of 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyongju, South Korea, 1999: 701-706.
[43] DARVISH K, BRUNO B, SIMETTI E, et al. An adaptive human-robot cooperation framework for assembly-like tasks[C]//Proceedings of International Conference of the Italian Association for Artificial Intelligence. Genova, Italy, 2016: 45-50.
[44] DARWISH K, WANDERLINGH F, BRUNO B, et al. Flexible human-robot cooperation models for assisted shop-floor tasks[EB/OL]. arXiv: 1707.02591, 2017.
[45] ZHENG Nanning, LIU Ziyi, REN Pengju, et al. Hybrid-augmented intelligence: collaboration and cognition[J]. Frontiers of information technology & electronic engineering, 2017, 18(2): 153-179.
[46] WANG Wei, LIU Yige, REN Pengqing, et al. The characteristics of human-robot coadaptation during human-in-the-loop optimization of exoskeleton control[C]//Proceedings of 2018 IEEE International Conference on Robotics and Biomimetics. Kuala Lumpur, Malaysia, 2018: 1459-1464.
[47] ZHANG Juanjuan, FIERS P, WITTE K A, et al. Human-in-the-loop optimization of exoskeleton assistance during walking[J]. Science, 2017, 365(6344): 1280-1284.
[48] DING Ye, KIM M, KUINDERSMA S, et al. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science robotics, 2018, 3(15): eaar5438.
[49] THATTE N, DUAN Helei, GEYER H. A sample-efficient black-box optimizer to train policies for human-in- the-loop systems with user preferences[J]. IEEE robotics and automation letters, 2017, 2(2): 993-1000.
[50] KIM M, DING Ye, MALCOLM P, et al. Human-in- the-loop Bayesian optimization of wearable device parameters[J]. PLoS one, 2017, 12(9): e0184054.
[51] HUANG Rui, CHENG Hong, CHEN Qiming, et al. Interactive learning for sensitivity factors of a human-powered augmentation lower exoskeleton[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 6409-6415.
[52] HUANG Rui, CHENG Hong, GUO Hongliang, et al. Hierarchical interactive learning for a human-powered augmentation lower exoskeleton[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden, 2016: 257-263.
[53] HUANG Rui, CHENG Hong, GUO Hongliang, et al. Hierarchical learning control with physical human-exoskeleton interaction[J]. Information sciences, 2018, 432: 584-595.
[54] HAMAYA M, MATSUBARA T, NODA T, et al. Learning task-parametrized assistive strategies for exoskeleton robots by multi-task reinforcement learning[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore, 2017: 5907-5912.
[55] 张光华, 潘婧. 人工智能技术在医疗领域中的应用[J]. 电子技术与软件工程, 2019(19): 239-240
ZHANG Guanghua, PAN Jing. Artificial intelligent technology and its applications in medicine[J]. Electronic technology & software engineering, 2019(19): 239-240
[56] 郑悦, 景晓蓓, 李光林. 人机智能协同在医疗康复机器人领域的应用[J]. 仪器仪表学报, 2017, 38(10): 2373-2380
ZHENG Yue, JING Xiaobei, LI Guanglin. Application of human-machine intelligence synergy in the field of medical and rehabilitation robot[J]. Chinese journal of scientific instrument, 2017, 38(10): 2373-2380
[57] BOGUE R. Robots in healthcare[J]. Industrial robot, 2011, 38(3): 218-223.
[58] HANLY E J, TALAMINI M A. Robotic abdominal surgery[J]. The American journal of surgery, 2004, 188(4): 19-26.
[59] 张乔冶. 达芬奇手术机器人系统及其应用[J]. 医疗装备, 2016, 29(9): 197-198
ZHANG Qiaozhi. Da Vinci surgical robot system and applications[J]. Medical equipment, 2016, 29(9): 197-198
[60] 肖勇, 孙平范, 陈罡. 康复机器人发展综述[J]. 信息系统工程, 2017(5): 131-133
XIAO Yong, SUN Pingfan, CHEN Gang. Overview of the rehabilitation robots development[J]. Information technology, 2017(5): 131-133
[61] DíAZ I, GIL J J, SáNCHEZ E. Lower-limb robotic rehabilitation: literature review and challenges[J]. Journal of robotics, 2011, 2011: 759764.
[62] ZEILIG G, WEINGARDEN H, ZWECKER M, et al. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study[J]. Journal of spinal cord medicine, 2012, 35(2): 96-101.
[63] PAN Y T, LAMB Z, MACIEVICH J, et al. A vibrotactile feedback device for balance rehabilitation in the EksoGTTM robotic exoskeleton[C]//Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics. Enschede, Netherlands, 2018: 569-576.
[64] CHEN S, LI J, SHUAI Mei, et al. First multicenter clinical trial of China’s domestically designed powered exoskeleton-assisted walking in patients with paraplegia[J]. Annals of physical and rehabilitation medicine, 2018, 61S: e495.
[65] HUANG Rui, CHENG Hong, QIU Jing, et al. Learning physical human-robot interaction with coupled cooperative primitives for a lower exoskeleton[J]. IEEE transactions on automation science and engineering, 2019, 16(4): 1566-1574.
[66] HUANG Rui, PENG Zhinan, CHENG Hong, et al. Learning-based walking assistance control strategy for a lower limb exoskeleton with hemiplegia patients[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain, 2018: 2280-2285.
[67] NODA T, SUGIMOTO N, FURUKAWA J, et al. Brain- controlled exoskeleton robot for BMI rehabilitation[C]//Proceedings of the 2012 12th IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan, 2012: 21-27.
[68] FLEISCHER C, REINICKE C, HOMMEL G. Predicting the intended motion with EMG signals for an exoskeleton orthosis controller[C]//Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 2005: 2029-2034.
[69] CASTELLINI C, VAN DER SMAGT P. Surface EMG in advanced hand prosthetics[J]. Biological cybernetics, 2009, 100(1): 35-47.
[70] VAN DER NIET OTR O, REINDERS-MESSELINK H A, BONGERS R M, et al. The i-LIMB hand and the DMC plus hand compared: a case report[J]. Prosthetics and orthotics international, 2010, 34(2): 216-220.
[71] BANDARA D S V, GOPURA R A R C, HEMAPALA K T M U, et al. Upper extremity prosthetics: current status, challenges and future directions[C]//Proceedings of the Seventeenth International Symposium on Artificial Life and Robotics. Beppu, Japan, 2012.
[72] LIU Hong, YANG Dapeng, LI Jiang, et al. Development of a multi-DOF prosthetic hand with intrinsic actuation, intuitive control and sensory feedback[J]. Industrial robot, 2014, 41(4): 381-392.
[73] CHEN Zhaopeng, LII N Y, WIMB?CK T, et al. Experimental analysis on spatial and cartesian impedance control for the dexterous DLR/HIT Ⅱ hand[J]. International journal of robotics and automation, 2014, 29(1): 1-13.
[74] BARABáS I, TODORU? A, CORDO? N, et al. Current challenges in autonomous driving[J]. Materials science and engineering, 2017, 252(1): 012096.
[75] 吴超仲, 吴浩然, 吕能超. 人机共驾智能汽车的控制权切换与安全性综述[J]. 交通运输工程学报, 2018, 18(6): 131-141
WU Chaozhong, WU Haoran, LYU Nengchao. Review of control switch and safety of human-computer driving intelligent vehicle[J]. Journal of traffic and transportation engineering, 2018, 18(6): 131-141
[76] YOUNG M S, STANTON N A, HARRIS D. Driving automation: learning from aviation about design philosophies[J]. International journal of vehicle design, 2007, 45(3): 323.
[77] HOC J M, YOUNG M S, BLOSSEVILLE J M. Cooperation between drivers and automation: implications for safety[J]. Theoretical issues in ergonomics science, 2009, 10(2): 135-160.
[78] ALONSO-MORA J, GOHL P, WATSON S, et al. Shared control of autonomous vehicles based on velocity space optimization[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014: 1639-1645.
[79] SOUALMI B, SENTOUH C, POPIEUL J C, et al. Automation- driver cooperative driving in presence of undetected obstacles[J]. Control engineering practice, 2014, 24: 106-119.
[80] MORRIS B, DOSHI A, TRIVEDI M. Lane change intent prediction for driver assistance: on-road design and evaluation[C]//Proceedings of 2011 IEEE Intelligent Vehicles Symposium. Baden, Germany, 2011: 895-901.
[81] 崔妍. 人工智能技术在陪护机器人中的应用策略[J]. 数字通信世界, 2019(9): 171
CUI Yan. Application strategy of artificial intelligence technology in escort robot[J]. Digital communication World, 2019(9): 171
[82] 张莉. 服务机器人迎来发展黄金期[J]. 中国对外贸易, 2019(9): 68-69
ZHANG Li. Service robot ushered in a golden period of development[J]. China’s foreign trade, 2019(9): 68-69
[83] 袁政华, 夏雪. 浅析家庭型服务机器人的发展前景[J]. 信息记录材料, 2019, 20(7): 45-46
YUAN Zhenghua, XIA Xue. A brief analysis of the development prospects of family-oriented service robots[J]. Information recording materials, 2019, 20(7): 45-46
[84] KNOX W B, STONE P, BREAZEAL C. Training a robot via human feedback: a case study[C]//Proceedings of the 5th International Conference on Social Robotics. Bristol, UK, 2013: 460-470.
[85] MUKAI T, HIRANO S, NAKASHIMA H, et al. Development of a nursing-care assistant robot RIBA that can lift a human in its arms[C]//Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taiwan, China, 2010: 5996-6001.
[86] GUIZZO E. How Aldebaran robotics built its friendly humanoid robot, pepper[EB/OL].[2014-12-26]. https://spectrum.ieee.org/robotics/home-robots/how-aldebaran-robotics-built-its-friendly-humanoid-robot-pepper.
[87] 韩晶, 解仑, 刘欣, 等. 基于Gross认知重评的机器人认知情感交互模型[J]. 东南大学学报(自然科学版), 2015, 45(2): 270-274
HAN Jing, XIE Lun, LIU Xin, et al. Cognitive emotion interaction model of robot based on Gross cognitive reappraisal[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(2): 270-274
[88] 黄宏程, 刘宁, 胡敏, 等. 基于博弈的机器人认知情感交互模型[J]. 电子与信息学报, 2019, 41(10): 2471-2478
HUANG Hongcheng, LIU Ning, HU Ming, et al. Cognitive emotion interaction model of robot based on game theory[J]. Journal of electronics & information technology, 2019, 41(10): 2471-2478

备注/Memo

收稿日期:2019-12-02。
基金项目:国家重点研发计划项目(2017YFB1302300);国家自然科学基金项目(61603078,61673088)
作者简介:程洪,教授,博士生导师,IEEE高级会员,美国卡内基梅隆大学访问学者,现为电子科技大学机器人研究中心执行主任,电子科技大学人工智能研究院副院长,主要研究方向为人工智能、外骨骼机器人、计算机视觉、智能驾驶。近5年主持国家重点研发计划、国家自然科学基金重点项目、工信部人工智能与实体经济融合创新项目等国家级和省部级项目10余项。申请并授权发明专利60项,16项已转化并实现产业应用。谷歌学术引用2 000次,H因子20。2013年入选Elsevier 2005—2015计算机领域近10年中国作者论文高下载榜单,独著英文专著2部,发表学术论文100余篇;黄瑞,博士后,IEEE会员,主要研究方向为外骨骼机器人、智能控制、强化学习。中国指挥与控制学会优秀博士论文获得者,授权发明专利5项,发表学术论文27篇;邱静,副教授,主要研究方向为外骨骼机器人、人因工程。主持国家重点研发计划子课题、国家自然科学基金和四川省重大专项等国家级和省部级项目5项。授权发明专利19项,发表学术论文20篇
通讯作者:程洪.E-mail:hcheng@uestc.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com