[1]狄岚,矫慧文,梁久祯.稀疏综合字典学习的小样本人脸识别[J].智能系统学报,2021,16(2):218-227.[doi:10.11992/tis.201910028]
DI Lan,JIAO Huiwen,LIANG Jiuzhen.Sparse comprehensive dictionary learning for small-sample face recognition[J].CAAI Transactions on Intelligent Systems,2021,16(2):218-227.[doi:10.11992/tis.201910028]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第2期
页码:
218-227
栏目:
学术论文—机器学习
出版日期:
2021-03-05
- Title:
-
Sparse comprehensive dictionary learning for small-sample face recognition
- 作者:
-
狄岚1, 矫慧文1, 梁久祯3
-
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122;
2. 道路交通安全公安部重点实验室,江苏 无锡 214151;
3. 常州大学 信息科学与工程学院,江苏 常州 213164
- Author(s):
-
DI Lan1, JIAO Huiwen1, LIANG Jiuzhen3
-
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China;
2. Laboratory of Ministry of Public Security for Road Traffic Safety, Wuxi 214151, China;
3. School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
-
- 关键词:
-
综合字典学习; 人脸识别; 类别特色字典; Fisher准则; 小样本; 图像扩充; 镜像准则; 扩充干扰字典; 混合特色字典; 低秩字典
- Keywords:
-
comprehensive dictionary learning; face recognition; class-specific dictionary learning; Fisher discrimination criterion; small sample; image expansion; mirror principle; extended interference dictionary; hybrid feature dictionary; low-rank dictionary
- 分类号:
-
TP394
- DOI:
-
10.11992/tis.201910028
- 摘要:
-
传统以字典学习为基础的小样本人脸识别方法存在字典低辨别性、弱鲁棒性等缺点,对此,本文提出稀疏综合字典学习模型。该模型有效利用和生成人脸变化,以镜像原理及Fisher准则扩充训练样本多样性,通过构造混合特色字典、扩充干扰字典以及低秩字典原子,提取不同类别数据之间的共性、特殊性和异常情况,从而提高算法识别率以及对表情变化、姿态变化、遮挡等异常情况的处理能力。在AR、YALEB、LFW等人脸数据库进行仿真实验,实验结果验证了算法的有效性和可行性。
- Abstract:
-
Traditional small-sample face recognition methods based on dictionary learning have disadvantages such as poor dictionary discrimination and lack of robustness. In this paper, we propose a sparse comprehensive dictionary learning model. This model effectively utilizes and generates facial changes, expands the diversity of training samples by the mirror principle and Fisher’s criterion, and extracts the commonalities, specialties, and anomalies between different categories of data by constructing a hybrid feature dictionary, extended interference dictionary, and low-rank dictionary atoms. This strategy improves the recognition rate of the algorithm and its ability to handle abnormal situations such as expression changes, pose changes, and occlusions. The results of simulation experiments performed on the face databases AR, YALEB, and LFW verify the effectiveness and feasibility of the proposed algorithm.
备注/Memo
收稿日期:2019-10-23。
基金项目:江苏省研究生科研与实践创新计划项目(KYCX19_1895);道路交通安全公安部重点实验室开放课题(2020ZDSYSKFKT03-2,A类)
作者简介:狄岚,副教授,中国人工智能学会粒计算与知识发现专业委员会委员,中国计算机学会会员,江苏省“六大人才高峰”资助对象,主要研究方向为数字图像处理和计算机仿真。近几年先后主持及参与国家级、省部级科研项目7项,主持校级科研项目4项、企业合作项目近20项,获省级自然科学学术奖1次,行业联合会技术奖3次。发表学术论文50余篇;矫慧文,硕士研究生,中国计算机学会会员,主要研究方向为图像处理和人脸识别;梁久祯,教授,博士,中国计算机学会会员,主要研究方向为计算机视觉和数字图像处理。主持项目10余项,获得浙江省青年英才奖等。发表教材与专著4部,专利成果57项,发表学术论文160余篇
通讯作者:狄岚.E-mail:dilan@jiangnan.edu.cn
更新日期/Last Update:
2021-04-25