[1]伍锡如,凌星雨.基于改进的Faster RCNN面部表情检测算法[J].智能系统学报,2021,16(2):210-217.[doi:10.11992/tis.201910020]
 WU Xiru,LING Xingyu.Facial expression recognition based on improved Faster RCNN[J].CAAI Transactions on Intelligent Systems,2021,16(2):210-217.[doi:10.11992/tis.201910020]
点击复制

基于改进的Faster RCNN面部表情检测算法

参考文献/References:
[1] CALVO R A, D’MELLO S. Affect detection:an interdisciplinary review of models, methods, and their applications[J]. IEEE transactions on affective computing, 2010, 1(1):18-37.
[2] IZARD C E. Innate and universal facial expressions:evidence from developmental and cross-cultural research[J]. Psychological bulletin, 1994, 115(2):288-299.
[3] SUN Zhe, HU Zhengping, ZHAO Mengyao. Automatically query active features based on pixel-level for facial expression recognition[J]. IEEE access, 2019, 7:104630-104641.
[4] ALPHONSE A S, STARVIN M S. A novel maximum and minimum response-based Gabor (MMRG) feature extraction method for facial expression recognition[J]. Multimedia tools and applications, 2019, 78(16):23369-23397.
[5] 童莹. 一种方向性的局部二值模式在人脸表情识别中的应用[J]. 智能系统学报, 2015, 10(3):422-428
TONG Ying. Local binary pattern based on the directions and its application in facial expression recognition[J]. CAAI transactions on intelligent systems, 2015, 10(3):422-428
[6] SADEGHI H, RAIE A A. Histogram distance metric learning for facial expression recognition[J]. Journal of visual communication and image representation, 2019, 62:152-165.
[7] HAPPY S L, ROUTRAY A. Automatic facial expression recognition using features of salient facial patches[J]. IEEE transactions on affective computing, 2015, 6(1):1-12.
[8] BEJAOUI H, GHAZOUANI H, BARHOUMI W. Sparse coding-based representation of LBP difference for 3D/4D facial expression recognition[J]. Multimedia tools and applications, 2019, 78(16):22773-22796.
[9] LI Ruiqi, TIAN Jing, CHUA M C H. Facial expressi on classification using salient pattern driven integrated geometric and textual features[J]. Multimedia tools and applications, 2019, 78(20):28971-28983.
[10] ZANGENEH E, MORADI A. Facial expression recognition by using differential geometric features[J]. The imaging science journal, 2018, 66(8):463-470.
[11] HAPPY S L, ROUTRAY A. Fuzzy histogram of optical flow orientations for micro-expression recognition[J]. IEEE transactions on affective computing, 2019, 10(3):394-406.
[12] LU Hua, KPALMA K, RONSIN J. Motion descriptors for micro-expression recognition[J]. Signal processing:image communication, 2018, 67:108-117.
[13] 刘帅师, 郭文燕, 张言, 等. 鲁棒的正则化编码随机遮挡表情识别[J]. 智能系统学报, 2018, 13(2):261-268
LIU Shuaishi, GUO Wenyan, ZHANG Yan, et al. Recognition of facial expression in case of random shielding based on ro-bust regularized coding[J]. CAAI transactions on intelligent systems, 2018, 13(2):261-268
[14] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[15] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[16] YANG Biao, CAO Jinmeng, NI Rongrong, et al. Facial expression recognition using weighted mixture deep neural network based on double-channel facial images[J]. IEEE access, 2017, 6:4630-4640.
[17] WU Min, SU Wanjuan, CHEN Luefeng, et al. Weight-adapted convolution neural network for facial expression recognition in Human-robot interaction[J]. IEEE transactions on systems, man, and cybernetics:systems, 2019, 51(3):1473-1484.
[18] SALMAM F Z, MADANI A, KISSI M. Fusing multi-stream deep neural networks for facial expression recognition[J]. Signal, image and video processing, 2019, 13(3):609-616.
[19] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA, 2014:580-587
[20] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, 2015:1440-1448.
[21] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149.
[22] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland:Springer, 2014:818-833.
[23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-12-12].http//:arXiv:1409.1556, 2014.
[24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016:770-778.
[25] LYONS M, AKAMATSU S, KAMACHI M, et al. Coding facial expressions with Gabor wavelets[C/OL]. Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Nara, Japan:IEEE, 1998.[2012-12-05]. http://www.doc88.com/p-6921152816768.html.
相似文献/References:
[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[4]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[5]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[6]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[7]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[8]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[9]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[10]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[11]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[12]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[13]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报,2019,14(4):627.[doi:10.11992/tis.201905026]
 LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14():627.[doi:10.11992/tis.201905026]
[14]单义,杨金福,武随烁,等.基于跳跃连接金字塔模型的小目标检测[J].智能系统学报,2019,14(6):1144.[doi:10.11992/tis.201905041]
 SHAN Yi,YANG Jinfu,WU Suishuo,et al.Skip feature pyramid network with a global receptive field for small object detection[J].CAAI Transactions on Intelligent Systems,2019,14():1144.[doi:10.11992/tis.201905041]
[15]赵振兵,江爱雪,戚银城,等.嵌入遮挡关系模块的SSD模型的输电线路图像金具检测[J].智能系统学报,2020,15(4):656.[doi:10.11992/tis.202001008]
 ZHAO Zhenbing,JIANG Aixue,QI Yincheng,et al.Fittings detection in transmission line images with SSD model embedded occlusion relation module[J].CAAI Transactions on Intelligent Systems,2020,15():656.[doi:10.11992/tis.202001008]
[16]张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758.[doi:10.11992/tis.202002010]
 ZHANG Xinyu,ZOU Zhenhong,LI Zhiwei,et al.Deep multi-modal fusion in object detection for autonomous driving[J].CAAI Transactions on Intelligent Systems,2020,15():758.[doi:10.11992/tis.202002010]
[17]王照国,张红云,苗夺谦.基于F1值的非极大值抑制阈值自动选取方法[J].智能系统学报,2020,15(5):1006.[doi:10.11992/tis.202006056]
 WANG Zhaoguo,ZHANG Hongyun,MIAO Duoqian.Automatic selection method of non-maximum suppression threshold based on F1 score[J].CAAI Transactions on Intelligent Systems,2020,15():1006.[doi:10.11992/tis.202006056]
[18]翟永杰,杨旭,赵振兵,等.融合共现推理的Faster R-CNN输电线路金具检测[J].智能系统学报,2021,16(2):237.[doi:10.11992/tis.202012023]
 ZHAI Yongjie,YANG Xu,ZHAO Zhenbing,et al.Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J].CAAI Transactions on Intelligent Systems,2021,16():237.[doi:10.11992/tis.202012023]
[19]洪恺临,曹江涛,姬晓飞.改进Center-Net网络的自主喷涂机器人室内窗户检测[J].智能系统学报,2021,16(3):425.[doi:10.11992/tis.202005016]
 HONG Kailin,CAO Jiangtao,JI Xiaofei.Indoor window detection of autonomous spraying robot based on improved CenterNet network[J].CAAI Transactions on Intelligent Systems,2021,16():425.[doi:10.11992/tis.202005016]
[20]朱齐丹,李小铜,郑天昊.舰载机位姿实时视觉测量算法研究[J].智能系统学报,2021,16(6):1045.[doi:10.11992/tis.202103014]
 ZHU Qidan,LI Xiaotong,ZHENG Tianhao.Research on real-time vision measurement algorithm of shipborne aircraft pose[J].CAAI Transactions on Intelligent Systems,2021,16():1045.[doi:10.11992/tis.202103014]

备注/Memo

收稿日期:2019-10-07。
基金项目:国家自然科学基金项目(61863007);广西自然科学基金项目(2020GXNSFDA238029);广西研究生教育创新计划项目(YCSW2020159);桂林电子科技大学研究生教育创新计划项目(C20YJM00BX0M,2021YCXS122)
作者简介:伍锡如,教授,博士,主要研究方向为深度学习、神经网络、机器人控制。主持国家自然科学基金项目2项,主持广西省自然科学基金项目3项,获国家发明专利10余项。出版专著1部、教材1部,发表学术论文40篇;凌星雨,硕士研究生,主要研究方向为深度学习、计算机视觉
通讯作者:凌星雨.E-mail:lingxychina@163.com

更新日期/Last Update: 2021-04-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com