[1]王召新,续欣莹,刘华平,等.基于级联宽度学习的多模态材质识别[J].智能系统学报,2020,15(4):787-794.[doi:10.11992/tis.201908021]
WANG Zhaoxin,XU Xinying,LIU Huaping,et al.Cascade broad learning for multi-modal material recognition[J].CAAI Transactions on Intelligent Systems,2020,15(4):787-794.[doi:10.11992/tis.201908021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第4期
页码:
787-794
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2020-07-05
- Title:
-
Cascade broad learning for multi-modal material recognition
- 作者:
-
王召新1, 续欣莹1, 刘华平2,3, 孙富春2,3
-
1. 太原理工大学 电气与动力工程学院,山西 太原 030600;
2. 清华大学 计算机科学与技术系,北京 100084;
3. 清华大学 智能技术系统国家重点实验室,北京 100084
- Author(s):
-
WANG Zhaoxin1, XU Xinying1, LIU Huaping2,3, SUN Fuchun2,3
-
1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030600, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
3. State Key Laboratory of Intelligent Technology and System, Tsinghua University, Beijing 100084, China
-
- 关键词:
-
级联结构; 宽度学习方法; 多模态融合; 材质识别; 光谱数据; 同构数据; 特征提取; 神经网络
- Keywords:
-
cascade structure; broad learning method; multi-modal fuse; material recognition; spectral data; homogeneous data; feature extraction; neural network
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201908021
- 摘要:
-
材质识别在机器人与周围环境的相互作用中起着至关重要的作用,视觉、触觉和听觉模式可以提供不同材质的不同特性,如何利用不同模态的信号快速、高效地完成材质识别任务是亟待解决的问题。并且在现实应用中,传感器收集的数据量不大,无法为深度神经网络提供足够的数据进行学习训练。为此,本文将级联宽度学习这种泛化性能好的算法应用在小样本的材质识别任务上。首先,将两组同构多模态数据进行特征融合,之后使用级联特征节点的宽度学习进行特征学习,最终得到材质分类结果。最后,针对公开数据开展实验评估。结果表明,本文提出的方法与其他算法相比,在完成材质识别任务的同时,降低了训练时间,提高了分类性能。
- Abstract:
-
Material recognition plays a vital role in the interaction betwee-n the robot and the surrounding environment. The visual, tactile and auditory modalities can provide different properties of various materials. How to use signals of different modalities to complete the task of material identification quickly and efficiently is an urgent problem to be solved. Moreover, in practical applications, the data collected by the sensor is limited, so it cannot provide enough data for deep neural network for learning and training. To this end, this paper applies the cascade broad learning with good generalization performance to the material recognition task of small samples. Firstly, feature fusion of two sets of homogeneous multi-modal data is carried out, and then feature learning is carried out by using the broad learning of cascading feature nodes, The results show that compared with other methods, the method proposed in this paper reduces the training time and improves the classification performance while completing the material recognition tasks.
备注/Memo
收稿日期:2019-08-19。
基金项目:国家自然科学基金项目(U1613212);山西省自然科学基金项目(201801D121144,201801D221190)
作者简介:王召新,硕士研究生,主要研究方向为模式识别、计算机视觉,多模态融合;续欣莹,教授,主要研究方向为粒计算、计算机视觉、智能控制。;孙富春,教授,博士生导师,中国人工智能学会副理事长,主要研究方向为智能控制与机器人、多模态数据感知、模式识别。IEEE Fellow,国家863计划专家组成员,荣获吴文俊科学技术奖创新奖一等奖、吴文俊科学技术奖进步奖一等奖。发表学术论文200余篇,出版专著3部、译书1部出版专著3部,译书1部.
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
2020-07-25